The pioneer factor hypothesis is not necessary to explain ectopic liver gene activation
Abstract
The Pioneer Factor Hypothesis (PFH) states that pioneer factors (PFs) are a subclass of transcription factors (TFs) that bind to and open inaccessible sites and then recruit non-pioneer factors (nonPFs) that activate batteries of silent genes. The PFH predicts that ectopic gene activation requires the sequential activity of qualitatively different TFs. We tested the PFH by expressing the endodermal PF FOXA1 and nonPF HNF4A in K562 lymphoblast cells. While co-expression of FOXA1 and HNF4A activated a burst of endoderm-specific gene expression, we found no evidence for a functional distinction between these two TFs. When expressed independently, both TFs bound and opened inaccessible sites, activated endodermal genes, and 'pioneered' for each other, although FOXA1 required fewer copies of its motif for binding. A subset of targets required both TFs, but the predominant mode of action at these targets did not conform to the sequential activity predicted by the PFH. From these results we hypothesize an alternative to the PFH where 'pioneer activity' depends not on categorically different TFs but rather on the affinity of interaction between TF and DNA.
Data availability
All genomic sequencing data have been deposited on Gene Expression Omnibus (GEO) under accession number GSE182191.
-
A Test of the Pioneer Factor HypothesisNCBI Gene Expression Omnibus, GSE182191.
-
Occupancy maps of 208 chromatin-associated proteins in one human cell typeNCBI Gene Expression Omnibus, GSE104247.
Article and author information
Author details
Funding
National Institute of General Medical Sciences (R01GM092910)
- Barak A Cohen
National Human Genome Research Institute (T32HG000045)
- Barak A Cohen
National Institute of General Medical Sciences (T32GM007200)
- Jeffrey L Hansen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Hansen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,961
- views
-
- 773
- downloads
-
- 51
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.