Low affinity integrin states have faster ligand binding kinetics than the high affinity state

  1. Jing Li
  2. Jiabin Yan
  3. Timothy A Springer  Is a corresponding author
  1. Boston Children's Hospital, United States

Abstract

Integrin conformational ensembles contain two low-affinity states, bent-closed and extended-closed, and an active, high-affinity, extended-open state. It is widely thought that integrins must be activated before they bind ligand; however, one model holds that activation follows ligand binding. As ligand-binding kinetics are not only rate limiting for cell adhesion but also have important implications for the mechanism of activation, we measure them here for integrins α4β1 and α5β1 and show that the low-affinity states bind substantially faster than the high-affinity state. On and off-rates are similar for integrins on cell surfaces and as ectodomain fragments. Although the extended-open conformation's on-rate is ~20-fold slower, its off-rate is ~25,000-fold slower, resulting in a large affinity increase. The tighter ligand-binding pocket in the open state may slow its on-rate. Low affinity integrin states not only bind ligand more rapidly, but are also more populous on the cell surface than high affinity states. Thus, our results suggest that integrin binding to ligand may precede, rather than follow, activation by 'inside-out signaling'.

Data availability

All data generated or analyzed during this study are included in the manuscript and source data files submitted.

Article and author information

Author details

  1. Jing Li

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiabin Yan

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timothy A Springer

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    For correspondence
    springer@crystal.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6627-2904

Funding

National Heart, Lung, and Blood Institute (R01-HL131729)

  • Jing Li
  • Timothy A Springer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Fässler, Max Planck Institute of Biochemistry, Germany

Version history

  1. Preprint posted: July 26, 2021 (view preprint)
  2. Received: August 25, 2021
  3. Accepted: December 1, 2021
  4. Accepted Manuscript published: December 2, 2021 (version 1)
  5. Version of Record published: January 5, 2022 (version 2)

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,954
    views
  • 320
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jing Li
  2. Jiabin Yan
  3. Timothy A Springer
(2021)
Low affinity integrin states have faster ligand binding kinetics than the high affinity state
eLife 10:e73359.
https://doi.org/10.7554/eLife.73359

Share this article

https://doi.org/10.7554/eLife.73359

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marian Brenner, Christoph Zink ... Antje Gohla
    Research Article

    Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5’-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Parthasarathy Sampathkumar, Heekyung Jung ... Yang Li
    Research Article

    Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody–RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.