Kidney organoids recapitulate human basement membrane assembly in health and disease
Abstract
Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal and adult kidney proteomes we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney BM assembly and provide a platform for understanding its wider relevance in human development and disease.
Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (Perez-Riverol et al., 2019) with the dataset identifiers: PXD025838, PXD025874, PXD025911 and PXD026002.This project also contains the following source data hosted at:https://doi.org/10.6084/m9.figshare.c.5429628Figure 1 Original IF Images: B Whole-mount immunofluorescence for kidney cell types; F Representative whole mount immunofluorescence images of wild-type and Alport kidney organoids; G Immunofluorescence for LAMB2.Figure 1 Original light microscope Images: C Representative photomicrographs of day 18 kidney organoids (left) and human and mouse fetal kidneys (right).Figure 1 Original TEM Images: D Transmission electron micrographs of tubular BM in day 25 kidney organoid and E19 mouse fetal kidney.Figure 1 Original western blotting image: H Immunoblotting for LAMB2 using total lysates from wild-type and Alport organoids.Figure 2 Original IF Images: A Confocal immunofluorescence microscopy of wild-type kidney organoids; B perlecan and nidogen on days 11, 18 and 25 of differentiation.Figure 4 Original IF Images: A Immunofluorescence for key type IV collagen and laminin isoforms showing their emergence and distribution in kidney organoid BM; D Immunofluorescence for specific collagen IV isoforms in maturing glomeruli in E19 mouse kidney and in glomerular structures (indicated by dashed lines) in day 25 organoids.Figure 1-figure supplement 2A Original TEM photomicrographs: A Transmission electron microscopy of day 25 kidney organoids shows advanced differentiation of glomerular structures.Figure 1-figure supplement 2B Original TEM photomicrographs: B Transmission electron microscopy of day 25 kidney organoids shows advanced differentiation of glomerular structures.Figure 1-figure supplement 1C Original IF images: C Immunofluorescence for integrin beta-1 (ITGB1) in day 25 kidney organoid (wild-type). Anti-panlaminin or anti-collagen IV antibodies were used to label basement membranes.
-
Single cell RNA-Seq of four human kidney organoidsNCBI Gene Expression Omnibus, GSE114802.
-
Pilot Fetal Cell Atlas RNAseqEGA, EGAS00001002553.
Article and author information
Author details
Funding
Wellcome Trust (Wellcome Senior Fellowship award,202860/Z/16/Z)
- Rachel Lennon
Kidney Research UK (Kidney Research UK grant (RP52/2014)
- Pinyuan Tian
- Rachel Lennon
São Paulo Research Foundation (Fellowship grants 2015/02535-2 and 2017/26785-5)
- Mychel RPT Morais
Global Challenges Research Fund
- Mychel RPT Morais
Veterans Affairs (Veterans Affairs Merit Awards 1I01BX002196-01 and DK069221)
- Roy Zent
NIHR Biomedical Research Centre, Royal Marsden NHS Foundation Trust/Institute of Cancer Research
- David A Long
Wellcome Trust (Investigator Award,220895/Z/20/Z)
- David A Long
Medical Research Council (Project grants MR/P018629/1 and MR/J003638/1)
- David A Long
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All mouse handling and experimental procedures were approved by the Animal EthicsCommittee of the Institute of Biomedical Sciences (University of São Paulo, Brazil; reference 019/2015). This was performed in accordance with recommendations from the current Brazilian legislation. All surgery was performed under avertin anaesthesia.
Human subjects: Human fetal kidney sections were provided by the Joint MRC/Wellcome Trust HumanDevelopmental Biology Resource (HDBR) (http://hdbr.org). The HDBR obtains written consent from the donors and has ethics approval (REC reference: 08/H0712/34+5) to collect, store and distribute human material sampled between 4 and 21 weeks post conception. All experimental protocols were approved by the Institute's Ethical Committee (reference 010/H0713/6) and were performed in accordance with institutional ethical and regulatory guidelines.
Copyright
© 2022, Morais et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,441
- views
-
- 790
- downloads
-
- 32
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
-
- Cell Biology
- Stem Cells and Regenerative Medicine
Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.