­­­Kidney organoids recapitulate human basement membrane assembly in health and disease

  1. Mychel RPT Morais
  2. Pinyuan Tian
  3. Craig Lawless
  4. Syed Murtuza-Baker
  5. Louise Hopkinson
  6. Steven Woods
  7. Aleksandr Mironov
  8. David A Long
  9. Daniel P Gale
  10. Telma MT Zorn
  11. Susan J Kimber
  12. Roy Zent
  13. Rachel Lennon  Is a corresponding author
  1. University of Manchester, United Kingdom
  2. University College London, United Kingdom
  3. University of São Paulo, Brazil
  4. Vanderbilt University Medical Center, United States

Abstract

Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal and adult kidney proteomes we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney BM assembly and provide a platform for understanding its wider relevance in human development and disease.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (Perez-Riverol et al., 2019) with the dataset identifiers: PXD025838, PXD025874, PXD025911 and PXD026002.This project also contains the following source data hosted at:https://doi.org/10.6084/m9.figshare.c.5429628Figure 1 Original IF Images: B Whole-mount immunofluorescence for kidney cell types; F Representative whole mount immunofluorescence images of wild-type and Alport kidney organoids; G Immunofluorescence for LAMB2.Figure 1 Original light microscope Images: C Representative photomicrographs of day 18 kidney organoids (left) and human and mouse fetal kidneys (right).Figure 1 Original TEM Images: D Transmission electron micrographs of tubular BM in day 25 kidney organoid and E19 mouse fetal kidney.Figure 1 Original western blotting image: H Immunoblotting for LAMB2 using total lysates from wild-type and Alport organoids.Figure 2 Original IF Images: A Confocal immunofluorescence microscopy of wild-type kidney organoids; B perlecan and nidogen on days 11, 18 and 25 of differentiation.Figure 4 Original IF Images: A Immunofluorescence for key type IV collagen and laminin isoforms showing their emergence and distribution in kidney organoid BM; D Immunofluorescence for specific collagen IV isoforms in maturing glomeruli in E19 mouse kidney and in glomerular structures (indicated by dashed lines) in day 25 organoids.Figure 1-figure supplement 2A Original TEM photomicrographs: A Transmission electron microscopy of day 25 kidney organoids shows advanced differentiation of glomerular structures.Figure 1-figure supplement 2B Original TEM photomicrographs: B Transmission electron microscopy of day 25 kidney organoids shows advanced differentiation of glomerular structures.Figure 1-figure supplement 1C Original IF images: C Immunofluorescence for integrin beta-1 (ITGB1) in day 25 kidney organoid (wild-type). Anti-panlaminin or anti-collagen IV antibodies were used to label basement membranes.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mychel RPT Morais

    Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Pinyuan Tian

    Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6080-5378
  3. Craig Lawless

    Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Syed Murtuza-Baker

    Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Louise Hopkinson

    Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1758-4201
  6. Steven Woods

    Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Aleksandr Mironov

    Electron Microscopy Core Facility, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. David A Long

    Developmental Biology and Cancer Programme, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6580-3435
  9. Daniel P Gale

    Department of Renal Medicine, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9170-1579
  10. Telma MT Zorn

    Department of Cell and Developmental Biology, University of São Paulo, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  11. Susan J Kimber

    Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Roy Zent

    Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Rachel Lennon

    Division of Cell-Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
    For correspondence
    Rachel.Lennon@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6400-0227

Funding

Wellcome Trust (Wellcome Senior Fellowship award,202860/Z/16/Z)

  • Rachel Lennon

Kidney Research UK (Kidney Research UK grant (RP52/2014)

  • Pinyuan Tian
  • Rachel Lennon

São Paulo Research Foundation (Fellowship grants 2015/02535-2 and 2017/26785-5)

  • Mychel RPT Morais

Global Challenges Research Fund

  • Mychel RPT Morais

Veterans Affairs (Veterans Affairs Merit Awards 1I01BX002196-01 and DK069221)

  • Roy Zent

NIHR Biomedical Research Centre, Royal Marsden NHS Foundation Trust/Institute of Cancer Research

  • David A Long

Wellcome Trust (Investigator Award,220895/Z/20/Z)

  • David A Long

Medical Research Council (Project grants MR/P018629/1 and MR/J003638/1)

  • David A Long

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gregory G Germino, National Institutes of Health, United States

Ethics

Animal experimentation: All mouse handling and experimental procedures were approved by the Animal EthicsCommittee of the Institute of Biomedical Sciences (University of São Paulo, Brazil; reference 019/2015). This was performed in accordance with recommendations from the current Brazilian legislation. All surgery was performed under avertin anaesthesia.

Human subjects: Human fetal kidney sections were provided by the Joint MRC/Wellcome Trust HumanDevelopmental Biology Resource (HDBR) (http://hdbr.org). The HDBR obtains written consent from the donors and has ethics approval (REC reference: 08/H0712/34+5) to collect, store and distribute human material sampled between 4 and 21 weeks post conception. All experimental protocols were approved by the Institute's Ethical Committee (reference 010/H0713/6) and were performed in accordance with institutional ethical and regulatory guidelines.

Version history

  1. Preprint posted: June 29, 2021 (view preprint)
  2. Received: August 31, 2021
  3. Accepted: January 24, 2022
  4. Accepted Manuscript published: January 25, 2022 (version 1)
  5. Version of Record published: February 16, 2022 (version 2)

Copyright

© 2022, Morais et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,637
    Page views
  • 698
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mychel RPT Morais
  2. Pinyuan Tian
  3. Craig Lawless
  4. Syed Murtuza-Baker
  5. Louise Hopkinson
  6. Steven Woods
  7. Aleksandr Mironov
  8. David A Long
  9. Daniel P Gale
  10. Telma MT Zorn
  11. Susan J Kimber
  12. Roy Zent
  13. Rachel Lennon
(2022)
­­­Kidney organoids recapitulate human basement membrane assembly in health and disease
eLife 11:e73486.
https://doi.org/10.7554/eLife.73486

Share this article

https://doi.org/10.7554/eLife.73486

Further reading

    1. Stem Cells and Regenerative Medicine
    Matias I Autio, Efthymios Motakis ... Roger SY Foo
    Research Article Updated

    Selection of the target site is an inherent question for any project aiming for directed transgene integration. Genomic safe harbour (GSH) loci have been proposed as safe sites in the human genome for transgene integration. Although several sites have been characterised for transgene integration in the literature, most of these do not meet criteria set out for a GSH and the limited set that do have not been characterised extensively. Here, we conducted a computational analysis using publicly available data to identify 25 unique putative GSH loci that reside in active chromosomal compartments. We validated stable transgene expression and minimal disruption of the native transcriptome in three GSH sites in vitro using human embryonic stem cells (hESCs) and their differentiated progeny. Furthermore, for easy targeted transgene expression, we have engineered constitutive landing pad expression constructs into the three validated GSH in hESCs.

    1. Immunology and Inflammation
    2. Stem Cells and Regenerative Medicine
    Jesus A Castor-Macias, Jacqueline A Larouche ... Carlos A Aguilar
    Research Article Updated

    The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.