Robust and annotation-free analysis of alternative splicing across diverse cell types in mice

  1. Gonzalo Benegas
  2. Jonathan Fischer
  3. Yun S Song  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Florida, United States

Abstract

Although alternative splicing is a fundamental and pervasive aspect of gene expression in higher eukaryotes, it is often omitted from single-cell studies due to quantification challenges inherent to commonly used short-read sequencing technologies. Here, we undertake the analysis of alternative splicing across numerous diverse murine cell types from two large-scale single-cell datasets-the Tabula Muris and BRAIN Initiative Cell Census Network-while accounting for understudied technical artifacts and unannotated events. We find strong and general cell-type-specific alternative splicing, complementary to total gene expression but of similar discriminatory value, and identify a large volume of novel splicing events. We specifically highlight splicing variation across different cell types in primary motor cortex neurons, bone marrow B cells, and various epithelial cells, and we show that the implicated transcripts include many genes which do not display total expression differences. To elucidate the regulation of alternative splicing, we build a custom predictive model based on splicing factor activity, recovering several known interactions while generating new hypotheses, including potential regulatory roles for novel alternative splicing events in critical genes like Khdrbs3 and Rbfox1. We make our results available using public interactive browsers to spur further exploration by the community.

Data availability

All data analyzed in this study are publicly available and URL links are provided in the Materials and Methods section of our manuscript.Our source code as well as all results represented in figures and tables are publicly available on our lab's GitHub repositories:https://github.com/songlab-cal/scquint andhttps://github.com/songlab-cal/scquint-analysis

The following previously published data sets were used

Article and author information

Author details

  1. Gonzalo Benegas

    Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan Fischer

    Department of Biostatistics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yun S Song

    Computer Science Division, University of California, Berkeley, Berkeley, United States
    For correspondence
    yss@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0734-9868

Funding

National Institutes of Health (R35-GM134922)

  • Gonzalo Benegas
  • Yun S Song

Chan Zuckerberg Initiative (CZF2019-002449)

  • Gonzalo Benegas
  • Yun S Song

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Benegas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,634
    views
  • 501
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gonzalo Benegas
  2. Jonathan Fischer
  3. Yun S Song
(2022)
Robust and annotation-free analysis of alternative splicing across diverse cell types in mice
eLife 11:e73520.
https://doi.org/10.7554/eLife.73520

Share this article

https://doi.org/10.7554/eLife.73520

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.