Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals

  1. Elena Bollati  Is a corresponding author
  2. Niclas H Lyndby
  3. Cecilia D'Angelo
  4. Michael Kühl
  5. Jörg Wiedenmann
  6. Daniel Wangpraseurt  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Ecole Polytechnique Fédérale de Lausanne, Switzerland
  3. University of Southampton, United Kingdom
  4. University of California, San Diego, United States

Abstract

Pigments homologous to the Green Fluorescent Protein (GFP) have been proposed to fine-tune the internal light microclimate of corals, facilitating photoacclimation of photosynthetic coral symbionts (Symbiodiniaceae) to life in different reef habitats and environmental conditions. However, direct measurements of the in vivo light conditions inside the coral tissue supporting this conclusion are lacking. Here, we quantified the intra-tissue spectral light environment of corals expressing GFP-like proteins from widely different light regimes. We focus on (1) photoconvertible red fluorescent proteins (pcRFPs), thought to enhance photosynthesis in mesophotic habitats via wavelength conversion, and (2) chromoproteins (CPs), which provide photoprotection to the symbionts in shallow water via light absorption. Optical microsensor measurements indicated that both pigment groups strongly alter the coral tissue light environment. Estimates derived from light spectra measured in pcRFP-containing corals showed that fluorescence emission can contribute to >50% of orange-red light available to the photosynthetic symbionts at mesophotic depths. We further show that upregulation of pink CPs in shallow-water corals during bleaching leads to a reduction of orange light by 10-20% compared to low-CP tissue. Thus, screening by CPs has an important role in mitigating the light-enhancing effect of coral tissue scattering during bleaching. Our results provide the first experimental quantification of the importance of GFP-like proteins in fine-tuning the light microclimate of corals during photoacclimation.

Data availability

Data used in this study is available from https://doi.org/10.5061/dryad.0gb5mkm1z

The following data sets were generated

Article and author information

Author details

  1. Elena Bollati

    Department of Biology, University of Copenhagen, Helsingør, Denmark
    For correspondence
    elena.bollati@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3536-4587
  2. Niclas H Lyndby

    Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0533-9663
  3. Cecilia D'Angelo

    Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Kühl

    Department of Biology, University of Copenhagen, Helsingør, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1792-4790
  5. Jörg Wiedenmann

    Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Wangpraseurt

    Department of NanoEngineering, University of California, San Diego, San Diego, United States
    For correspondence
    dwangpraseurt@eng.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (702911-BioMIC-FUEL)

  • Daniel Wangpraseurt

Gordon and Betty Moore Foundation (GMB 9325)

  • Daniel Wangpraseurt

Gordon and Betty Moore Foundation (GBMF9206)

  • Michael Kühl

Natural Environment Research Council (NE/S003533/2)

  • Jörg Wiedenmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Tessmar-Raible, University of Vienna, Austria

Version history

  1. Received: September 1, 2021
  2. Preprint posted: October 7, 2021 (view preprint)
  3. Accepted: July 7, 2022
  4. Accepted Manuscript published: July 8, 2022 (version 1)
  5. Version of Record published: August 1, 2022 (version 2)

Copyright

© 2022, Bollati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,460
    views
  • 540
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elena Bollati
  2. Niclas H Lyndby
  3. Cecilia D'Angelo
  4. Michael Kühl
  5. Jörg Wiedenmann
  6. Daniel Wangpraseurt
(2022)
Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals
eLife 11:e73521.
https://doi.org/10.7554/eLife.73521

Share this article

https://doi.org/10.7554/eLife.73521

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.