Distinct and diverse chromatin-proteomes of ageing mouse organs reveal protein signatures that correlate with physiological functions

Abstract

Temporal molecular changes in ageing mammalian organs are of relevance to disease etiology because many age-related diseases are linked to changes in the transcriptional and epigenetic machinery that regulate gene expression. We performed quantitative proteome analysis of chromatin-enriched protein extracts to investigate the dynamics of the chromatin-proteomes of the mouse brain, heart, lung, kidney, liver, and spleen at 3, 5, 10, and 15 months of age. Each organ exhibited a distinct chromatin-proteome and sets of unique proteins. The brain and spleen chromatin-proteomes were the most extensive, diverse, and heterogenous among the six organs. The spleen chromatin proteome appeared static during the lifespan, presenting a young phenotype that reflects the permanent alertness state and important role of this organ in physiological defense and immunity. We identified a total of 5928 proteins, including 2472 nuclear or chromatin associated proteins across the six mouse organs. Up to 3125 proteins were quantified in each organ demonstrating distinct and organ-specific temporal protein expression timelines and regulation at the post-translational level. Bioinformatics meta-analysis of these chromatin proteomes revealed distinct physiological and ageing-related features for each organ. Our results demonstrate the efficiency of organelle specific proteomics for in vivo studies of a model organism and consolidate the hypothesis that chromatin-associated proteins are involved in distinct and specific physiological functions in ageing organs.

Data availability

Proteomics data is deposited in public repository as specified in manuscript.

The following data sets were generated

Article and author information

Author details

  1. Giorgio Oliviero

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Sergey Kovalchuk

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Adelina Rogowska-Wrzesinska

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9876-0061
  4. Veit Schwämmle

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Ole N Jensen

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    For correspondence
    jenseno@bmb.sdu.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1862-8528

Funding

Villum Fonden (7292)

  • Ole N Jensen

Danmarks Grundforskningsfond (DNRF #82)

  • Ole N Jensen

Danish Agency for Science and Higher Education (5072-00007B)

  • Giorgio Oliviero

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Sebastian Denzel, Altos Labs, United Kingdom

Ethics

Animal experimentation: Male C57BL/6J mice were obtained from a study approved by the Danish Animal EthicsInspectorate (J.nr. 2011/561-1950).

Version history

  1. Received: September 10, 2021
  2. Preprint posted: September 12, 2021 (view preprint)
  3. Accepted: March 7, 2022
  4. Accepted Manuscript published: March 8, 2022 (version 1)
  5. Version of Record published: March 18, 2022 (version 2)

Copyright

© 2022, Oliviero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,766
    views
  • 241
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giorgio Oliviero
  2. Sergey Kovalchuk
  3. Adelina Rogowska-Wrzesinska
  4. Veit Schwämmle
  5. Ole N Jensen
(2022)
Distinct and diverse chromatin-proteomes of ageing mouse organs reveal protein signatures that correlate with physiological functions
eLife 11:e73524.
https://doi.org/10.7554/eLife.73524

Share this article

https://doi.org/10.7554/eLife.73524

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.