Characterization of the endogenous DAF-12 ligand and its use as an anthelmintic agent in Strongyloides stercoralis

  1. Zhu Wang
  2. Mi Cheong Cheong
  3. Jet Tsien
  4. Heping Deng
  5. Tian Qin
  6. Jonathan DC Stoltzfus
  7. Tegegn G Jaleta
  8. Xinshe Li
  9. James B Lok
  10. Steven A Kliewer  Is a corresponding author
  11. David J Mangelsdorf  Is a corresponding author
  1. Department of Pharmacology, University of Texas Southwestern Medical Center, United States
  2. Department of Biochemistry, University of Texas Southwestern Medical Center, United States
  3. Department of Biology, Millersville University of Pennsylvania, United States
  4. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, United States
  5. Department of Molecular Biology, University of Texas Southwestern Medical Center, United States
  6. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States
8 figures, 4 tables and 1 additional file

Figures

Lifecycle of S. stercoralis.

Similar to other nematodes, S. stercoralis hatch from eggs and undergo four larval (L) molts to become adults, either in the environment or in the host. The parasite has two infectious stages …

Figure 2 with 2 supplements
Identification of Δ7-dafachronic acid as the endogenous DAF-12 ligand in S. stercoralis.

(A) Purification of the endogenous S. stercoralis ligand for Ss-DAF-12. Lipids from free-living L3 worms were extracted and fractionated as described in Figure 2—figure supplement 1. The resulting …

Figure 2—figure supplement 1
Strategy for activity-based, DAF-12 ligand purification in S. stercoralis.

(A) DAF-12 ligand purification scheme. (B) Determination of purification efficacy. To estimate the efficiency of DA purification, 10 μM of Δ4-DA was added as a standard to ~2 million C. elegans …

Figure 2—figure supplement 2
Δ4-DA and Δ1,7-DA are not present in free-living L3 parasites.

(A) Δ1,7-DA is undetectable in FL-L3 larvae. The active DAF-12 fractions shown in Figure 2 were analyzed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC–MS) in …

Profiling of Δ7-DA in developmental stages of S. stercoralis.

(A) Detection of Δ7-DA during the lifecycle of S. stercoralis. Lipid extracts from the indicated stages of S. stercoralis were analyzed by derivatizing Δ7-DA to Δ7-DA-picolylamine, which then was …

Figure 4 with 1 supplement
Characterization of the Δ7-DA biosynthetic pathway in S. stercoralis.

(A) Diagram of Δ7-DA biosynthetic pathway in C. elegans. In blue are the known C. elegans enzymes followed in parentheses by the number of candidate orthologs found in S. stercoralis. (B) Δ7-DA is …

Figure 4—figure supplement 1
Expression of the 26 S. stercoralis cytochrome P450 enzymes in insect Sf9 cells.

P450 enzymes were fused to C-terminal HA tags and detected by immunoblot using an anti-HA antibody. The C. elegans DAF-9 enzyme is shown as a positive control. The experiment was repeated three …

Figure 4—figure supplement 1—source data 1

Full gel images for the expression of Ss-CYPs.

https://cdn.elifesciences.org/articles/73535/elife-73535-fig4-figsupp1-data1-v2.pdf
Figure 5 with 1 supplement
Ss-CYP22a9 is required for L3i activation and Δ7-DA synthesis in S. stercoralis.

(A) Inhibition of cytochrome P450 activity blocks Δ7-DA synthesis in parasites. L3i (1000 worms/group) were treated with 0.5 mM 8-Br-cGMP in the presence or absence of 25 μM ketoconazole (Kcz). Data …

Figure 5—figure supplement 1
In vivo characterization of the DAF-9 homolog (Ss-CYP22a9) in S. stercoralis.

(A) Ss-cyp22a9 mRNA expression is increased by cGMP in L3i larvae. L3i larvae were treated as in Figure 5 and Ss-cyp22a9 mRNA levels were measured by qPCR and compared to 18S rRNA levels. Results …

Figure 6 with 1 supplement
Δ7-DA suppresses output of fecal larvae in latent, uncomplicated strongyloidiasis.

(A) Δ7-DA treatment reduces fecal larvae by >90% in gerbils infected with S. stercoralis. (B) Adult parasite burden in infected gerbils measured at 14-day post-treatment. Data are plotted as the …

Figure 6—figure supplement 1
Δ7-DA suppresses output of fecal larvae in latent, uncomplicated strongyloidiasis.

Δ7-DA treatment reduces fecal larvae by >90% in gerbils infected with S. stercoralis. This is a replot of Figure 6A showing individual data points. Data are plotted as the mean ± standard error (SE) …

Figure 7 with 1 supplement
Δ7-DA and ivermectin act cooperatively to treat disseminated strongyloidiasis hyperinfection.

(A) Kaplan–Meier survival curves of hyperinfected gerbils treated with vehicle (Veh), Δ7-DA, and/or ivermectin (IVM). Sample sizes: n = 18 (Veh), 10 (DA), 10 (IVM), 9 (DA+ IVM); q values (shown in …

Figure 7—figure supplement 1
Ivermectin (IVM) mimics the treatment of a human S. stercoralis hyperinfection in gerbil models.

Vehicle or IVM (300 mg/kg) was injected i.p. into S. stercoralis hyperinfected gerbils at 21-day postinfection and fecal larval output was measured 7 days later. IVM treatment results in ~40% …

Strategy for using DAF-12-based therapeutics to treat strongyloidiasis.

Administration of DAF-12 ligands like Δ7-DA disrupts the lifecycle of nematode parasites by preventing the development of the infective L3i and L3a worms, where DAF-12 is normally unliganded. …

Tables

Table 1
Detection methods for the compounds in this study.
SteroidsRetention time(min)MS detection modeParent ion (m/z)Product ion (m/z)
Δ7-DA2.1Negative SIM413N/A
Δ4-DA1.9Negative SIM413N/A
Δ1,7-DA2.0Negative SIM411N/A
Δ7-DA-PA2.1Positive MRM505487
[13C]-Δ7-DA-PA2.1Positive MRM508490
[2H]–7-Dehydrocholesterol3.9Positive MRM374109
[2H]-Lathosterone4.1Positive MRM392109
  1. MRM, multiple reaction monitoring; SIM, selective ion monitoring.

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene(S. stercoralis)Ss_cyp22a9WormbaseSSTP_0001032100
Gene(S. stercoralis)Ss-daf-36WormbaseSSTP_0000037900
Gene(S. stercoralis)Ss-scdh-16WormbaseSSTP_0001031100
Cell line (Cercopithecus aethiops)COS-7ATCCCat# CRL-1651; RRID:CVCL_0224
Cell line (Spodoptera frugiperda)Sf9ATCCCat# CRL-1711; RRID:CVCL_0549
Strain, strain background(Meriones unguiculatus, male)Mongolian gerbilCharles RiversStrain code: 243
Strain, strain background(Canis familiaris, male)DogOak Hill GeneticsN/A
Antibodyanti-HA tag antibody [HA.C5] (Mouse monoclonal)AbcamCat# ab18181; RRID:AB_444303WB (1:2000)
Recombinant DNA reagentpGL4.53(plasmid)PromegaE5011
Recombinant DNA reagentpCMX-CeSs-DAF-12(plasmid)Wang et al., 2009 (PMID:19497877)N/A
Recombinant DNA reagentpNL3.1-DAF-12RE-lit-1(plasmid)This paperN/ADAF-12 reporter
Recombinant DNA reagentpFastBac-Dual-hOR(plasmid)Motola et al., 2006 (PMID:16529801)N/A
Recombinant DNA reagentpFastBac-Dual-hOR-CYPs(plasmids)This paperN/AExpress hOR and CYPs in Sf9 cells
Recombinant DNA reagentpFastBac-Dual-hOR-DAF-36s(plasmids)This paperN/AExpress hOR and DAF-36s in Sf9 cells
Recombinant DNA reagentpFastBac-Dual-hOR-DHS-16s(plasmids)This paperN/AExpress hOR and DHS-16s in Sf9 cells
Recombinant DNA reagentpML60-Ss-unc-22(plasmid)Gang et al., 2017 (PMID:29016680)N/A
Recombinant DNA reagentpML60-Ss-cyp22a9(plasmid)This paperN/AGuide RNA plasmid for Ss-cyp22a9
Recombinant DNA reagentpPV540(plasmid)Lok, 2019 (PMID:31379923)N/A
Commercial assay or kitNano-Glo Dual-luciferase kitsPromegaN1620
Commercial assay or kitNADPH regeneration systemPromegaV9510
Commercial assay or kitMicrosome Isolation KitAbcamab206995
Chemical compound, drugKetoconazoleSigmaK1003
Chemical compound, drug8-Bromo-cGMPTocris1089
Chemical compound, drugMethylprednisolone acetateZeotisDEPO-MEDRO20 mg/ml
Chemical compound, drugIvermectinMerial LimitedIvermec1% solution
Chemical compound, drugChenodeoxycholic acid-2H4Sigma614,122
Chemical compound, drugTriphenylphosphineSigmaT84409
Chemical compound, drug2,2′-Dipyridyl disulfideSigmaD5767
Chemical compound, drug2-PicolylamineSigmaA65204
Chemical compound, drugCholesterol-13C3Cambridge IsotopeCLM-9139
Chemical compound, drugCholesterol-2H7Avanti Polar Lipids700041 P
Chemical compound, drugLathosterol-2H7Avanti Polar Lipids700,056
Chemical compound, drug7-Dehydrocholesterol-2H7Avanti Polar Lipids700116P
Chemical compound, drugLathosteroneSteraloidsC7500-000
Chemical compound, drugAlexa Fluor 594 fluorescent dyeThermo FisherA33082
Table 2
Sample preparation for Δ7-DA quantification in S. stercoralis.
Parasite sampleAmountLysis methodStandard preparation
FL-L1/L2200,000Sonication100 nM Δ7-DA compound spiked in 200,000 FL-L1/L2
FL-L350,000Sonication100 nM Δ7-DA compound spiked in 50,000 FL-L3
FL-adult5000Sonication100 nM Δ7-DA compound spiked in 5000 FL-adults
PFL-L1200,000Sonication100 nM Δ7-DA compound spiked in 200,000 PFL-L1
L3i50,000Sonication100 nM Δ7-DA compound spiked in 50,000 L3i
L3+1000Proteinase K100 nM Δ7-DA compound spiked in 1000 L3+
P-adult500Proteinase K100 nM Δ7-DA compound spiked in 500 FL-adults
Intestinal L1-L3a5000Proteinase K100 nM Δ7-DA compound spiked in 5000 Int-larvae
cGMP-treated L3i1000Proteinase K100 nM Δ7-DA compound spiked in 1000 L3i
Table 3
Oligo sequences used in this study.
SequenceDescription
ForwardGGCATCACCATACAAAACAGSs-cyp22a9 wild-type allele genotyping
ReverseTTTGTATGAGGAGGGTTGTG
ForwardGGCATCACCATACAAAACAGSs-cyp22a9 KO allele genotyping
ReverseCATCACATTCATCAAAAGTCCACT
ForwardTCCTGGCCAGTGCTAATGTTATTSs-cyp22a9 qPCR
ReverseCTATTTGGACGGGATGAGAAGACT
ForwardTGGTGCATGGCCGTTCTTASs-18SRNA qPCR
ReverseCTCGCTCGTTATCGGAATCAA
ForwardGCTGGGGACTTATGGACAGGgttttagagctagaaatagcaagsgRNA expression plasmid
Reverse/5phos/CATTGTATTGGATGGCAATCtargeting Ss-cyp22a9

Additional files

Download links