Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer's disease mice synapse model

  1. Tetsuya Hori
  2. Kohgaku Eguchi
  3. Han-Ying Wang
  4. Tomohiro Miyasaka
  5. Laurent Guillaud
  6. Zacharie Taoufiq
  7. Satyajit Mahapatra
  8. Hiroshi Yamada
  9. Kohji Takei
  10. Tomoyuki Takahashi  Is a corresponding author
  1. Okinawa Institute of Science and Technology - Graduate University, Japan
  2. Institute of Science and Technology Austria, Austria
  3. Doshisha University, Japan
  4. Okayama University, Japan

Abstract

Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer's disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin-1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for All Figures.

Article and author information

Author details

  1. Tetsuya Hori

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0823-3306
  2. Kohgaku Eguchi

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6170-2546
  3. Han-Ying Wang

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3021-7134
  4. Tomohiro Miyasaka

    Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Laurent Guillaud

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9688-0991
  6. Zacharie Taoufiq

    Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Satyajit Mahapatra

    Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroshi Yamada

    Department of Neuroscience, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Kohji Takei

    Department of Neuroscience, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Tomoyuki Takahashi

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    For correspondence
    ttakahas@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8771-7666

Funding

Okinawa Institute of Science and Technology Graduate University

  • Tomoyuki Takahashi

Core Research for Evolutional Science and Technology

  • Tomoyuki Takahashi

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas,26117004)

  • Tomohiro Miyasaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the guidelines of the Physiological Society of Japan and animal experiment regulations at Okinawa Institute of Science and Technology Graduate University.

Copyright

© 2022, Hori et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,027
    views
  • 679
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tetsuya Hori
  2. Kohgaku Eguchi
  3. Han-Ying Wang
  4. Tomohiro Miyasaka
  5. Laurent Guillaud
  6. Zacharie Taoufiq
  7. Satyajit Mahapatra
  8. Hiroshi Yamada
  9. Kohji Takei
  10. Tomoyuki Takahashi
(2022)
Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer's disease mice synapse model
eLife 11:e73542.
https://doi.org/10.7554/eLife.73542

Share this article

https://doi.org/10.7554/eLife.73542

Further reading

    1. Cell Biology
    Weihong Xiong, Maozhen Qin, Haining Zhong
    Short Report

    Protein kinase A (PKA) plays essential roles in diverse cellular functions. However, the spatiotemporal dynamics of endogenous PKA upon activation remain debated. The classical model predicts that PKA catalytic subunits dissociate from regulatory subunits in the presence of cAMP, whereas a second model proposes that catalytic subunits remain associated with regulatory subunits following physiological activation. Here, we report that different PKA subtypes, as defined by the regulatory subunit, exhibit distinct subcellular localization at rest in CA1 neurons of cultured hippocampal slices. Nevertheless, when all tested PKA subtypes are activated by norepinephrine, presumably via the β-adrenergic receptor, catalytic subunits translocate to dendritic spines but regulatory subunits remain unmoved. These differential spatial dynamics between the subunits indicate that at least a significant fraction of PKA dissociates. Furthermore, PKA-dependent regulation of synaptic plasticity and transmission can be supported only by wildtype, dissociable PKA, but not by inseparable PKA. These results indicate that endogenous PKA regulatory and catalytic subunits dissociate to achieve PKA function in neurons.

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.