Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer's disease mice synapse model

  1. Tetsuya Hori
  2. Kohgaku Eguchi
  3. Han-Ying Wang
  4. Tomohiro Miyasaka
  5. Laurent Guillaud
  6. Zacharie Taoufiq
  7. Satyajit Mahapatra
  8. Hiroshi Yamada
  9. Kohji Takei
  10. Tomoyuki Takahashi  Is a corresponding author
  1. Okinawa Institute of Science and Technology - Graduate University, Japan
  2. Institute of Science and Technology Austria, Austria
  3. Doshisha University, Japan
  4. Okayama University, Japan

Abstract

Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer's disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin-1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for All Figures.

Article and author information

Author details

  1. Tetsuya Hori

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0823-3306
  2. Kohgaku Eguchi

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6170-2546
  3. Han-Ying Wang

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3021-7134
  4. Tomohiro Miyasaka

    Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Laurent Guillaud

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9688-0991
  6. Zacharie Taoufiq

    Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Satyajit Mahapatra

    Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroshi Yamada

    Department of Neuroscience, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Kohji Takei

    Department of Neuroscience, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Tomoyuki Takahashi

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
    For correspondence
    ttakahas@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8771-7666

Funding

Okinawa Institute of Science and Technology Graduate University

  • Tomoyuki Takahashi

Core Research for Evolutional Science and Technology

  • Tomoyuki Takahashi

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas,26117004)

  • Tomohiro Miyasaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the guidelines of the Physiological Society of Japan and animal experiment regulations at Okinawa Institute of Science and Technology Graduate University.

Reviewing Editor

  1. Nils Brose, Max Planck Institute of Experimental Medicine, Germany

Version history

  1. Received: September 2, 2021
  2. Preprint posted: September 14, 2021 (view preprint)
  3. Accepted: April 20, 2022
  4. Accepted Manuscript published: April 26, 2022 (version 1)
  5. Version of Record published: May 5, 2022 (version 2)

Copyright

© 2022, Hori et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,543
    Page views
  • 609
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tetsuya Hori
  2. Kohgaku Eguchi
  3. Han-Ying Wang
  4. Tomohiro Miyasaka
  5. Laurent Guillaud
  6. Zacharie Taoufiq
  7. Satyajit Mahapatra
  8. Hiroshi Yamada
  9. Kohji Takei
  10. Tomoyuki Takahashi
(2022)
Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer's disease mice synapse model
eLife 11:e73542.
https://doi.org/10.7554/eLife.73542

Share this article

https://doi.org/10.7554/eLife.73542

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Guanxiong Yan, Yang Ma ... Wei Miao
    Research Article

    Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.

    1. Cell Biology
    2. Neuroscience
    Anna Kádková, Jacqueline Murach ... Jakob Balslev Sørensen
    Research Article

    SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.