Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter

  1. Evangelos Mourkas
  2. Koji Yahara
  3. Sion C Bayliss
  4. Jessica K Calland
  5. Håkan Johansson
  6. Leonardos Mageiros
  7. Zilia Y Muñoz-Ramirez
  8. Grant Futcher
  9. Guillaume Méric
  10. Matthew D Hitchings
  11. Santiago Sandoval-Motta
  12. Javier Torres
  13. Keith A Jolley
  14. Martin CJ Maiden
  15. Patrik Ellström
  16. Jonas Waldenström
  17. Ben Pascoe
  18. Samuel K Sheppard  Is a corresponding author
  1. University of Bath, United Kingdom
  2. National Institute of Infectious Diseases, Japan
  3. Linnaeus University, Sweden
  4. Instituto Mexicano del Seguro Social, Mexico
  5. Baker Heart and Diabetes Institute, Australia
  6. Swansea University, United Kingdom
  7. University of Oxford, United Kingdom
  8. Uppsala University, Sweden

Abstract

Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter there are species with divergent ecologies, from rarely isolated single host specialists to multi-host generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterising these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analysing recipient and donor population ancestry among genomes from 30 Campylobacter species we show that cohabitation in the same host can lead to a 6-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.

Data availability

Genomes sequenced as part of other studies are archived on the Short Read Archive associated with BioProject accessions: PRJNA176480, PRJNA177352, PRJNA342755, PRJNA345429, PRJNA312235, PRJNA415188, PRJNA524300, PRJNA528879, PRJNA529798, PRJNA575343, PRJNA524315 and PRJNA689604. Additional genomes were also downloaded from NCBI [101] and pubMLST (http://pubmlst.org/campylobacter). Contiguous assemblies of all genome sequences compared are available at the public data repository Figshare (doi: 10.6084/m9.figshare.15061017) and individual project and accession numbers can be found in Supplementary Table 1.

Article and author information

Author details

  1. Evangelos Mourkas

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7411-4743
  2. Koji Yahara

    Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4289-1115
  3. Sion C Bayliss

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5997-2002
  4. Jessica K Calland

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Håkan Johansson

    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Leonardos Mageiros

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0846-522X
  7. Zilia Y Muñoz-Ramirez

    Instituto Mexicano del Seguro Social, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Grant Futcher

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Guillaume Méric

    Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthew D Hitchings

    Swansea University, Swansea, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Santiago Sandoval-Motta

    Instituto Mexicano del Seguro Social, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  12. Javier Torres

    Instituto Mexicano del Seguro Social, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  13. Keith A Jolley

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Martin CJ Maiden

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6321-5138
  15. Patrik Ellström

    Department of Medical Sciences, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  16. Jonas Waldenström

    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  17. Ben Pascoe

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Samuel K Sheppard

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    For correspondence
    s.k.sheppard@bath.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6901-3203

Funding

Medical Research Council (MR/M501608/1)

  • Samuel K Sheppard

Medical Research Council (MR/L015080/1)

  • Samuel K Sheppard

Wellcome Trust (088786/C/09/Z)

  • Samuel K Sheppard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Mourkas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,696
    views
  • 279
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evangelos Mourkas
  2. Koji Yahara
  3. Sion C Bayliss
  4. Jessica K Calland
  5. Håkan Johansson
  6. Leonardos Mageiros
  7. Zilia Y Muñoz-Ramirez
  8. Grant Futcher
  9. Guillaume Méric
  10. Matthew D Hitchings
  11. Santiago Sandoval-Motta
  12. Javier Torres
  13. Keith A Jolley
  14. Martin CJ Maiden
  15. Patrik Ellström
  16. Jonas Waldenström
  17. Ben Pascoe
  18. Samuel K Sheppard
(2022)
Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter
eLife 11:e73552.
https://doi.org/10.7554/eLife.73552

Share this article

https://doi.org/10.7554/eLife.73552

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.

    1. Computational and Systems Biology
    2. Neuroscience
    Bernhard Englitz, Sahar Akram ... Shihab Shamma
    Research Article

    Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.