Science Forum: Building a community to engineer synthetic cells and organelles from the bottom-up

  1. Oskar Staufer  Is a corresponding author
  2. Jacqueline A De Lora
  3. Eleonora Bailoni
  4. Alisina Bazrafshan
  5. Amelie S Benk
  6. Kevin Jahnke
  7. Zachary A Manzer
  8. Lado Otrin
  9. Telmo Díez Pérez
  10. Judee Sharon
  11. Jan Steinkühler
  12. Katarzyna P Adamala
  13. Bruna Jacobson
  14. Marileen Dogterom
  15. Kerstin Göpfrich
  16. Darko Stefanovic
  17. Susan R Atlas
  18. Michael Grunze
  19. Matthew R Lakin
  20. Andrew P Shreve
  21. Joachim P Spatz  Is a corresponding author
  22. Gabriel P López  Is a corresponding author
  1. Max Planck Institute for Medical Research, Germany
  2. University of Groningen, Netherlands
  3. Emory University, United States
  4. Cornell University, United States
  5. Max Planck Institute for Dynamics of Complex Technical Systems, Germany
  6. University of New Mexico, United States
  7. University of Minnesota, United States
  8. Max Planck Institute of Colloids and Interfaces, Germany
  9. Delft University of Technology, Netherlands
  10. University of New Mexico, United Kingdom
  • Download
  • Cite
  • CommentOpen annotations (there are currently 0 annotations on this page).

Abstract

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.

Data availability

This Feature Article does not contain any primary data

Article and author information

Author details

  1. Oskar Staufer

    Max Planck Institute for Medical Research, Heidelberg, Germany
    For correspondence
    oskar.staufer@mr.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8015-3132
  2. Jacqueline A De Lora

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5599-7838
  3. Eleonora Bailoni

    University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Alisina Bazrafshan

    Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3259-8196
  5. Amelie S Benk

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Jahnke

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7311-6993
  7. Zachary A Manzer

    Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8225-8990
  8. Lado Otrin

    Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5862-456X
  9. Telmo Díez Pérez

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Judee Sharon

    University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5691-0407
  11. Jan Steinkühler

    Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4226-7945
  12. Katarzyna P Adamala

    University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1066-7207
  13. Bruna Jacobson

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Marileen Dogterom

    Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8803-5261
  15. Kerstin Göpfrich

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2115-3551
  16. Darko Stefanovic

    University of New Mexico, Albuquerque, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Susan R Atlas

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1542-2700
  18. Michael Grunze

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2335-9513
  19. Matthew R Lakin

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Andrew P Shreve

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9567-3181
  21. Joachim P Spatz

    Max Planck Institute for Medical Research, Heidelberg, Germany
    For correspondence
    Joachim.Spatz@mpimf-heidelberg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3419-9807
  22. Gabriel P López

    University of New Mexico, Albuquerque, United States
    For correspondence
    gplopez@unm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5383-0708

Funding

National Science Foundation (CBET-1841170)

  • Gabriel P López

Max Planck Society (Max Planck School Matter to Life)

  • Joachim P Spatz

New Mexico Consortium

  • Gabriel P López

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Staufer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,046
    views
  • 415
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.