Science Forum: Building a community to engineer synthetic cells and organelles from the bottom-up
Abstract
Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.
Data availability
This Feature Article does not contain any primary data
Article and author information
Author details
Funding
National Science Foundation (CBET-1841170)
- Gabriel P López
Max Planck Society (Max Planck School Matter to Life)
- Joachim P Spatz
New Mexico Consortium
- Gabriel P López
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Staufer et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,000
- views
-
- 408
- downloads
-
- 32
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Nature has inspired the design of improved inhibitors for cancer-causing proteins.
-
- Structural Biology and Molecular Biophysics
Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.