Science Forum: Building a community to engineer synthetic cells and organelles from the bottom-up

  1. Oskar Staufer  Is a corresponding author
  2. Jacqueline A De Lora
  3. Eleonora Bailoni
  4. Alisina Bazrafshan
  5. Amelie S Benk
  6. Kevin Jahnke
  7. Zachary A Manzer
  8. Lado Otrin
  9. Telmo Díez Pérez
  10. Judee Sharon
  11. Jan Steinkühler
  12. Katarzyna P Adamala
  13. Bruna Jacobson
  14. Marileen Dogterom
  15. Kerstin Göpfrich
  16. Darko Stefanovic
  17. Susan R Atlas
  18. Michael Grunze
  19. Matthew R Lakin
  20. Andrew P Shreve
  21. Joachim P Spatz  Is a corresponding author
  22. Gabriel P López  Is a corresponding author
  1. Max Planck Institute for Medical Research, Germany
  2. University of Groningen, Netherlands
  3. Emory University, United States
  4. Cornell University, United States
  5. Max Planck Institute for Dynamics of Complex Technical Systems, Germany
  6. University of New Mexico, United States
  7. University of Minnesota, United States
  8. Max Planck Institute of Colloids and Interfaces, Germany
  9. Delft University of Technology, Netherlands
  10. University of New Mexico, United Kingdom

Abstract

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.

Data availability

This Feature Article does not contain any primary data

Article and author information

Author details

  1. Oskar Staufer

    Max Planck Institute for Medical Research, Heidelberg, Germany
    For correspondence
    oskar.staufer@mr.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8015-3132
  2. Jacqueline A De Lora

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5599-7838
  3. Eleonora Bailoni

    University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Alisina Bazrafshan

    Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3259-8196
  5. Amelie S Benk

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Jahnke

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7311-6993
  7. Zachary A Manzer

    Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8225-8990
  8. Lado Otrin

    Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5862-456X
  9. Telmo Díez Pérez

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Judee Sharon

    University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5691-0407
  11. Jan Steinkühler

    Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4226-7945
  12. Katarzyna P Adamala

    University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1066-7207
  13. Bruna Jacobson

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Marileen Dogterom

    Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8803-5261
  15. Kerstin Göpfrich

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2115-3551
  16. Darko Stefanovic

    University of New Mexico, Albuquerque, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Susan R Atlas

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1542-2700
  18. Michael Grunze

    Max Planck Institute for Medical Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2335-9513
  19. Matthew R Lakin

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Andrew P Shreve

    University of New Mexico, Albuquerque, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9567-3181
  21. Joachim P Spatz

    Max Planck Institute for Medical Research, Heidelberg, Germany
    For correspondence
    Joachim.Spatz@mpimf-heidelberg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3419-9807
  22. Gabriel P López

    University of New Mexico, Albuquerque, United States
    For correspondence
    gplopez@unm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5383-0708

Funding

National Science Foundation (CBET-1841170)

  • Gabriel P López

Max Planck Society (Max Planck School Matter to Life)

  • Joachim P Spatz

New Mexico Consortium

  • Gabriel P López

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Staufer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,000
    views
  • 408
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oskar Staufer
  2. Jacqueline A De Lora
  3. Eleonora Bailoni
  4. Alisina Bazrafshan
  5. Amelie S Benk
  6. Kevin Jahnke
  7. Zachary A Manzer
  8. Lado Otrin
  9. Telmo Díez Pérez
  10. Judee Sharon
  11. Jan Steinkühler
  12. Katarzyna P Adamala
  13. Bruna Jacobson
  14. Marileen Dogterom
  15. Kerstin Göpfrich
  16. Darko Stefanovic
  17. Susan R Atlas
  18. Michael Grunze
  19. Matthew R Lakin
  20. Andrew P Shreve
  21. Joachim P Spatz
  22. Gabriel P López
(2021)
Science Forum: Building a community to engineer synthetic cells and organelles from the bottom-up
eLife 10:e73556.
https://doi.org/10.7554/eLife.73556
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sasha L Evans, Bethany A Haynes ... Rivka L Isaacson
    Insight

    Nature has inspired the design of improved inhibitors for cancer-causing proteins.

    1. Structural Biology and Molecular Biophysics
    Gabriel E Jara, Francesco Pontiggia ... Dorothee Kern
    Research Article

    Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.