Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors

  1. Andrea Marie Chambers
  2. Kyle Byrnes Lupo
  3. Jiao Wang
  4. Jingming Cao
  5. Sagar Utturkar
  6. Nadia Atallah Lanman
  7. Victor Bernal-Crespo
  8. Shadia Jalal
  9. Sharon R Pine
  10. Sandra Toregrosa-Allen
  11. Bennett D Elzey
  12. Sandro Matosevic  Is a corresponding author
  1. Purdue University West Lafayette, United States
  2. Indiana University, United States
  3. Rutgers, The State University of New Jersey, United States

Abstract

Immunometabolic reprogramming due to adenosine produced by CD73 (encoded by the 5'-ectonucleotidase gene NT5E) is a recognized immunosuppressive mechanism contributing to immune evasion in solid tumors. Adenosine is not only known to contribute to tumor progression, but it has specific roles in driving dysfunction of immune cells, including natural killer (NK) cells. Here, we engineered human NK cells to directly target the CD73-adenosine axis by blocking the enzymatic activity of CD73. In doing so, the engineered NK cells not only impaired adenosinergic metabolism driven by the hypoxic uptake of ATP by cancer cells in a model of non-small-cell lung cancer, but also mediated killing of tumor cells due to the specific recognition of overexpressed CD73. This resulted in a 'single agent' immunotherapy that combines antibody specificity, blockade of purinergic signaling, and killing of targets mediated by NK cells. We also showed that CD73-targeted NK cells are potent in vivo and result in tumor arrest, while promoting NK cell infiltration into CD73+ tumors and enhancing intratumoral activation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, or are available at doi.org/10.5061/dryad.931zcrjnp. Source data have been provided for Figure 1 - Source Data 1 and 2 (Tables S1 and S2).

The following data sets were generated

Article and author information

Author details

  1. Andrea Marie Chambers

    Department of Industrial and Physical Pharmacy, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle Byrnes Lupo

    Department of Industrial and Physical Pharmacy, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiao Wang

    Department of Industrial and Physical Pharmacy, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingming Cao

    Department of Industrial and Physical Pharmacy, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sagar Utturkar

    Center for Cancer Research, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadia Atallah Lanman

    Center for Cancer Research, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Victor Bernal-Crespo

    Histology Research Laboratory, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shadia Jalal

    Department of Medicine, Indiana University, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sharon R Pine

    Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sandra Toregrosa-Allen

    Center for Cancer Research, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bennett D Elzey

    Center for Cancer Research, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Sandro Matosevic

    Department of Industrial and Physical Pharmacy, Purdue University West Lafayette, West Lafayette, United States
    For correspondence
    sandro@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5118-2455

Funding

V Foundation for Cancer Research (#D2019-039)

  • Sandro Matosevic

Lilly Graduate Fellowship (2019)

  • Andrea Marie Chambers

Walther Cancer Foundation (0186.01)

  • Sandro Matosevic

Migliaccio/Pfizer Graduate Fellowship (2019-2020)

  • Andrea Marie Chambers

National Cancer Institute (P30 CA023168)

  • Sagar Utturkar
  • Nadia Atallah Lanman
  • Sandra Toregrosa-Allen
  • Bennett D Elzey

National Cancer Institute (P30 CA082709)

  • Shadia Jalal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Purdue University (protocol 1112000342). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Human subjects: Written informed consent was obtained from all subjects involved in the study. All procedures performed in studies involving human participants were approved by Purdue University's Institutional Review Board (IRB). The peripheral blood NK cells were obtained from normal healthy donor volunteers who gave written consent through Purdue University's IRB protocol (#1804020540).

Copyright

© 2022, Chambers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,815
    views
  • 461
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Marie Chambers
  2. Kyle Byrnes Lupo
  3. Jiao Wang
  4. Jingming Cao
  5. Sagar Utturkar
  6. Nadia Atallah Lanman
  7. Victor Bernal-Crespo
  8. Shadia Jalal
  9. Sharon R Pine
  10. Sandra Toregrosa-Allen
  11. Bennett D Elzey
  12. Sandro Matosevic
(2022)
Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors
eLife 11:e73699.
https://doi.org/10.7554/eLife.73699

Share this article

https://doi.org/10.7554/eLife.73699

Further reading

    1. Immunology and Inflammation
    Miki Kume, Hanako Koguchi-Yoshioka ... Rei Watanabe
    Research Article

    Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown. Here, we revealed that while Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it was downregulated in the keratinocytes of both psoriatic lesions and non-lesions compared to controls. Imiquimod application induced more severe dermatitis in Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of Sema4A KO mice showed increased T cell infiltration and IL-17A expression along with thicker epidermis and distinct cytokeratin expression compared to WT mice, which are hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced dermatitis. The epidermis of psoriatic non-lesion and Sema4A KO mice demonstrated mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the skewed expression of cytokeratins in Sema4A KO mice. Conclusively, Sema4A-mediated signaling cascades can be triggers for psoriasis and targets in the treatment and prevention of psoriasis.

    1. Immunology and Inflammation
    2. Medicine
    Yong Jin, Jiayu Xing ... Qingsheng Yu
    Research Article

    Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson’s disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.