Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models

  1. Morteza Chalabi Hajkarim
  2. Ella Karjalainen
  3. Mikhail Osipovitch
  4. Konstantinos Dimopoulos
  5. Sandra L Gordon
  6. Francesca Ambri
  7. Kasper Dindler Rasmussen
  8. Kirsten Grønbæk
  9. Kristian Helin
  10. Krister Wennerberg  Is a corresponding author
  11. Kyoung-Jae Won  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. University of Helsinki, Finland
  3. Rigshospitalet, Denmark
  4. University of Dundee, United Kingdom
  5. Memorial Sloan Kettering Cancer Center, United States

Abstract

Large-scale multiparameter screening has become increasingly feasible and straightforward to perform thanks to developments in technologies such as high-content microscopy and high-throughput flow cytometry. The automated toolkits for analyzing similarities and differences between large numbers of tested conditions have not kept pace with these technological developments. Thus, effective analysis of multiparameter screening datasets becomes a bottleneck and a limiting factor in unbiased interpretation of results. Here we introduce compaRe, a toolkit for large-scale multiparameter data analysis, which integrates quality control, data bias correction, and data visualization methods with a mass-aware gridding algorithm-based similarity analysis providing a much faster and more robust analyses than existing methods. Using mass and flow cytometry data from acute myeloid leukemia and myelodysplastic syndrome patients, we show that compaRe can reveal interpatient heterogeneity and recognizable phenotypic profiles. By applying compaRe to high-throughput flow cytometry drug response data in AML models, we robustly identified multiple types of both deep and subtle phenotypic response patterns, highlighting how this analysis could be used for therapeutic discoveries. In conclusion, compaRe is a toolkit that uniquely allows for automated, rapid, and precise comparisons of large-scale multiparameter datasets, including high-throughput screens.

Data availability

Mass cytometry datasets were downloaded from Cytobank Community with the experiment ID 44185. AML mouse and human high-throughput flow cytometry data have been deposited in FLOWRepository with the repository IDs FR-FCM-Z357 and FR-FCM-Z3DP respectively. Flow cytometry data of AML and MDS patients have been deposited in FLOWRepository with the repository ID FR-FCM-Z3ET. Acquisition, installation and more technical details are available in compaRe's online tutorial on (https://github.com/morchalabi/COMPARE-suite). Similarity measurement and clustering modules as stand-alone tools have been merged into a separate R package and are available for download at (https://github.com/morchalabi/compaRe).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Morteza Chalabi Hajkarim

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2039-2676
  2. Ella Karjalainen

    Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Mikhail Osipovitch

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Konstantinos Dimopoulos

    Rigshospitalet, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Sandra L Gordon

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0270-8291
  6. Francesca Ambri

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Kasper Dindler Rasmussen

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Kirsten Grønbæk

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Kristian Helin

    Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Krister Wennerberg

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    For correspondence
    krister.wennerberg@bric.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1352-4220
  11. Kyoung-Jae Won

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    For correspondence
    kyoung.won@bric.ku.dk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Novo Nordisk Foundation center for Stem Cell Biology (NNF17CC0027852)

  • Kirsten Grønbæk
  • Kristian Helin
  • Krister Wennerberg
  • Kyoung-Jae Won

Kræftens Bekæmpelse (R223‐A13071)

  • Kirsten Grønbæk
  • Kristian Helin
  • Krister Wennerberg
  • Kyoung-Jae Won

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The informed consent, and consent to publish of patient samples in this study has been approved by the Danish National Science Ethics Committee/National Videnskabsetisk Komite: Målrettet behandling af patienter med blodsygdomme, license no. 1705391.

Reviewing Editor

  1. Aleksandra M Walczak, CNRS LPENS, France

Publication history

  1. Preprint posted: January 9, 2021 (view preprint)
  2. Received: September 9, 2021
  3. Accepted: February 14, 2022
  4. Accepted Manuscript published: February 15, 2022 (version 1)
  5. Version of Record published: April 20, 2022 (version 2)
  6. Version of Record updated: May 3, 2022 (version 3)

Copyright

© 2022, Chalabi Hajkarim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 709
    Page views
  • 129
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Morteza Chalabi Hajkarim
  2. Ella Karjalainen
  3. Mikhail Osipovitch
  4. Konstantinos Dimopoulos
  5. Sandra L Gordon
  6. Francesca Ambri
  7. Kasper Dindler Rasmussen
  8. Kirsten Grønbæk
  9. Kristian Helin
  10. Krister Wennerberg
  11. Kyoung-Jae Won
(2022)
Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models
eLife 11:e73760.
https://doi.org/10.7554/eLife.73760

Further reading

    1. Computational and Systems Biology
    Mayank Baranwal et al.
    Research Article

    Predicting the dynamics and functions of microbiomes constructed from the bottom-up is a key challenge in exploiting them to our benefit. Current models based on ecological theory fail to capture complex community behaviors due to higher order interactions, do not scale well with increasing complexity and in considering multiple functions. We develop and apply a long short-term memory (LSTM) framework to advance our understanding of community assembly and health-relevant metabolite production using a synthetic human gut community. A mainstay of recurrent neural networks, the LSTM learns a high dimensional data-driven non-linear dynamical system model. We show that the LSTM model can outperform the widely used generalized Lotka-Volterra model based on ecological theory. We build methods to decipher microbe-microbe and microbe-metabolite interactions from an otherwise black-box model. These methods highlight that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite production whereas Bacteroides shape community dynamics. We use the LSTM model to navigate a large multidimensional functional landscape to design communities with unique health-relevant metabolite profiles and temporal behaviors. In sum, the accuracy of the LSTM model can be exploited for experimental planning and to guide the design of synthetic microbiomes with target dynamic functions.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Laura M Doherty et al.
    Research Article

    Deubiquitinating enzymes (DUBs), ~100 of which are found in human cells, are proteases that remove ubiquitin conjugates from proteins, thereby regulating protein turnover. They are involved in a wide range of cellular activities and are emerging therapeutic targets for cancer and other diseases. Drugs targeting USP1 and USP30 are in clinical development for cancer and kidney disease respectively. However, the majority of substrates and pathways regulated by DUBs remain unknown, impeding efforts to prioritize specific enzymes for research and drug development. To assemble a knowledgebase of DUB activities, co-dependent genes, and substrates, we combined targeted experiments using CRISPR libraries and inhibitors with systematic mining of functional genomic databases. Analysis of the Dependency Map, Connectivity Map, Cancer Cell Line Encyclopedia, and multiple protein-protein interaction databases yielded specific hypotheses about DUB function, a subset of which were confirmed in follow-on experiments. The data in this paper are browsable online in a newly developed DUB Portal and promise to improve understanding of DUBs as a family as well as the activities of incompletely characterized DUBs (e.g. USPL1 and USP32) and those already targeted with investigational cancer therapeutics (e.g. USP14, UCHL5, and USP7).