Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models

  1. Morteza Chalabi Hajkarim
  2. Ella Karjalainen
  3. Mikhail Osipovitch
  4. Konstantinos Dimopoulos
  5. Sandra L Gordon
  6. Francesca Ambri
  7. Kasper Dindler Rasmussen
  8. Kirsten Grønbæk
  9. Kristian Helin
  10. Krister Wennerberg  Is a corresponding author
  11. Kyoung-Jae Won  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. University of Helsinki, Finland
  3. Rigshospitalet, Denmark
  4. University of Dundee, United Kingdom
  5. Memorial Sloan Kettering Cancer Center, United States

Abstract

Large-scale multiparameter screening has become increasingly feasible and straightforward to perform thanks to developments in technologies such as high-content microscopy and high-throughput flow cytometry. The automated toolkits for analyzing similarities and differences between large numbers of tested conditions have not kept pace with these technological developments. Thus, effective analysis of multiparameter screening datasets becomes a bottleneck and a limiting factor in unbiased interpretation of results. Here we introduce compaRe, a toolkit for large-scale multiparameter data analysis, which integrates quality control, data bias correction, and data visualization methods with a mass-aware gridding algorithm-based similarity analysis providing a much faster and more robust analyses than existing methods. Using mass and flow cytometry data from acute myeloid leukemia and myelodysplastic syndrome patients, we show that compaRe can reveal interpatient heterogeneity and recognizable phenotypic profiles. By applying compaRe to high-throughput flow cytometry drug response data in AML models, we robustly identified multiple types of both deep and subtle phenotypic response patterns, highlighting how this analysis could be used for therapeutic discoveries. In conclusion, compaRe is a toolkit that uniquely allows for automated, rapid, and precise comparisons of large-scale multiparameter datasets, including high-throughput screens.

Data availability

Mass cytometry datasets were downloaded from Cytobank Community with the experiment ID 44185. AML mouse and human high-throughput flow cytometry data have been deposited in FLOWRepository with the repository IDs FR-FCM-Z357 and FR-FCM-Z3DP respectively. Flow cytometry data of AML and MDS patients have been deposited in FLOWRepository with the repository ID FR-FCM-Z3ET. Acquisition, installation and more technical details are available in compaRe's online tutorial on (https://github.com/morchalabi/COMPARE-suite). Similarity measurement and clustering modules as stand-alone tools have been merged into a separate R package and are available for download at (https://github.com/morchalabi/compaRe).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Morteza Chalabi Hajkarim

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2039-2676
  2. Ella Karjalainen

    Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Mikhail Osipovitch

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Konstantinos Dimopoulos

    Rigshospitalet, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Sandra L Gordon

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0270-8291
  6. Francesca Ambri

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Kasper Dindler Rasmussen

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Kirsten Grønbæk

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Kristian Helin

    Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Krister Wennerberg

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    For correspondence
    krister.wennerberg@bric.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1352-4220
  11. Kyoung-Jae Won

    Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
    For correspondence
    kyoung.won@bric.ku.dk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Novo Nordisk Foundation center for Stem Cell Biology (NNF17CC0027852)

  • Kirsten Grønbæk
  • Kristian Helin
  • Krister Wennerberg
  • Kyoung-Jae Won

Kræftens Bekæmpelse (R223‐A13071)

  • Kirsten Grønbæk
  • Kristian Helin
  • Krister Wennerberg
  • Kyoung-Jae Won

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The informed consent, and consent to publish of patient samples in this study has been approved by the Danish National Science Ethics Committee/National Videnskabsetisk Komite: Målrettet behandling af patienter med blodsygdomme, license no. 1705391.

Copyright

© 2022, Chalabi Hajkarim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,323
    views
  • 215
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Morteza Chalabi Hajkarim
  2. Ella Karjalainen
  3. Mikhail Osipovitch
  4. Konstantinos Dimopoulos
  5. Sandra L Gordon
  6. Francesca Ambri
  7. Kasper Dindler Rasmussen
  8. Kirsten Grønbæk
  9. Kristian Helin
  10. Krister Wennerberg
  11. Kyoung-Jae Won
(2022)
Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models
eLife 11:e73760.
https://doi.org/10.7554/eLife.73760

Share this article

https://doi.org/10.7554/eLife.73760

Further reading

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.