Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids

  1. Debdeep Chatterjee
  2. Reeba S Jacob
  3. Soumik Ray
  4. Ambuja Navalkar
  5. Namrata Singh
  6. Shinjinee Sengupta
  7. Laxmikant Gadhe
  8. Pradeep Kadu
  9. Debalina Datta
  10. Ajoy Paul
  11. Sakunthala Arunima
  12. Surabhi Mehra
  13. Chinmai Pindi
  14. Santosh Kumar
  15. Praful Singru
  16. Sanjib Senapati
  17. Samir K Maji  Is a corresponding author
  1. Indian Institute of Technology Bombay, India
  2. Indian Institute of Technology Madras, India
  3. National Institute of Science Education and Research, India

Abstract

Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer’s disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for main Figures 1-5 and Supplementary figures and tables.

Article and author information

Author details

  1. Debdeep Chatterjee

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Reeba S Jacob

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Soumik Ray

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Ambuja Navalkar

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Namrata Singh

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Shinjinee Sengupta

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Laxmikant Gadhe

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Pradeep Kadu

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Debalina Datta

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Ajoy Paul

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  11. Sakunthala Arunima

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  12. Surabhi Mehra

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1777-673X
  13. Chinmai Pindi

    Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  14. Santosh Kumar

    School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
    Competing interests
    The authors declare that no competing interests exist.
  15. Praful Singru

    School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
    Competing interests
    The authors declare that no competing interests exist.
  16. Sanjib Senapati

    Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  17. Samir K Maji

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    For correspondence
    samirmaji@iitb.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9110-1565

Funding

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR9797/NNT/28/774/2014)

  • Samir K Maji

Department of Biotechnology, Ministry of Science and Technology, India (BT/HRD/35/01/03/2020)

  • Samir K Maji

Department of Science and Technology, Ministry of Science and Technology, India (CRG/2019/001133)

  • Samir K Maji

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Adult, female, Sprague-Dawley rats taken for this study were maintained under the standard environmental conditions and Institutional Animal Ethical Committee (IAEC) at NISER, Bhubaneswar, India approved the experimental protocols. (Protocol Numbers: NISER/SBS/AH-210 and NISER/SBS/AH-212).

Reviewing Editor

  1. Mishaela R Rubin, Columbia University Medical Center, United States

Publication history

  1. Preprint posted: September 1, 2021 (view preprint)
  2. Received: September 13, 2021
  3. Accepted: March 3, 2022
  4. Accepted Manuscript published: March 8, 2022 (version 1)
  5. Version of Record published: April 8, 2022 (version 2)

Copyright

© 2022, Chatterjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,578
    Page views
  • 281
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debdeep Chatterjee
  2. Reeba S Jacob
  3. Soumik Ray
  4. Ambuja Navalkar
  5. Namrata Singh
  6. Shinjinee Sengupta
  7. Laxmikant Gadhe
  8. Pradeep Kadu
  9. Debalina Datta
  10. Ajoy Paul
  11. Sakunthala Arunima
  12. Surabhi Mehra
  13. Chinmai Pindi
  14. Santosh Kumar
  15. Praful Singru
  16. Sanjib Senapati
  17. Samir K Maji
(2022)
Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids
eLife 11:e73835.
https://doi.org/10.7554/eLife.73835

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Dario Segura-Peña, Oda Hovet ... Nikolina Sekulic
    Research Article

    Aurora B, together with IN-box, the C-terminal part of INCENP, forms an enzymatic complex that ensures faithful cell division. The [Aurora B/IN-box] complex is activated by autophosphorylation in the Aurora B activation loop and in IN-box, but it is not clear how these phosphorylations activate the enzyme. We used a combination of experimental and computational studies to investigate the effects of phosphorylation on the molecular dynamics and structure of [Aurora B/IN-box]. In addition, we generated partially phosphorylated intermediates to analyze the contribution of each phosphorylation independently. We found that the dynamics of Aurora and IN-box are interconnected, and IN-box plays both positive and negative regulatory roles depending on the phosphorylation status of the enzyme complex. Phosphorylation in the activation loop of Aurora B occurs intramolecularly and prepares the enzyme complex for activation, but two phosphorylated sites are synergistically responsible for full enzyme activity.

    1. Biochemistry and Chemical Biology
    Liam P Coyne, Xiaowen Wang ... Xin Jie Chen
    Research Article Updated

    Mitochondrial biogenesis requires the import of >1,000 mitochondrial preproteins from the cytosol. Most studies on mitochondrial protein import are focused on the core import machinery. Whether and how the biophysical properties of substrate preproteins affect overall import efficiency is underexplored. Here, we show that protein traffic into mitochondria can be disrupted by amino acid substitutions in a single substrate preprotein. Pathogenic missense mutations in ADP/ATP translocase 1 (ANT1), and its yeast homolog ADP/ATP carrier 2 (Aac2), cause the protein to accumulate along the protein import pathway, thereby obstructing general protein translocation into mitochondria. This impairs mitochondrial respiration, cytosolic proteostasis, and cell viability independent of ANT1’s nucleotide transport activity. The mutations act synergistically, as double mutant Aac2/ANT1 causes severe clogging primarily at the translocase of the outer membrane (TOM) complex. This confers extreme toxicity in yeast. In mice, expression of a super-clogger ANT1 variant led to neurodegeneration and an age-dependent dominant myopathy that phenocopy ANT1-induced human disease, suggesting clogging as a mechanism of disease. More broadly, this work implies the existence of uncharacterized amino acid requirements for mitochondrial carrier proteins to avoid clogging and subsequent disease.