CompoundRay, an open-source tool for high-speed and high-fidelity rendering of compound eyes

  1. Blayze Millward  Is a corresponding author
  2. Steve Maddock
  3. Michael Mangan
  1. University of Sheffield, United Kingdom

Abstract

Revealing the functioning of compound eyes is of interest to biologists and engineers alike who wish to understand how visually complex behaviours (e.g. detection, tracking, navigation) arise in nature, and to abstract concepts to develop novel artificial sensory systems. A key investigative method is to replicate the sensory apparatus using artificial systems, allowing for investigation of the visual information that drives animal behaviour when exposed to environmental cues. To date, 'Compound Eye Models' (CEMs) have largely explored features such field of view and angular resolution, but the role of shape and overall structure have been largely overlooked due to modelling complexity. Modern real-time raytracing technologies are enabling the construction of a new generation of computationally fast, high-fidelity CEMs. This work introduces a new open-source CEM software (CompoundRay) that is capable of accurately rendering the visual perspective of bees (6,000 individual ommatidia arranged on two realistic eye surfaces) at over 3,000 frames per second. We show how the speed and accuracy facilitated by this software can be used to investigate pressing research questions (e.g. how low resolutions compound eyes can localise small objects) using modern methods (e.g. ML information exploration).

Data availability

The manuscript is a computational study, with all modelling code and data accessible on GitHub at https://github.com/ManganLab/eye-rendererUse of the natural environment was kindly provided by Dr. JoeWoodgate, Queen Mary University of London and is subject to upcoming publication. As such, instead included in the CompoundRay repository is a stand-in natural 3D terrain model. As all models are used for demonstrative purpose, this stand-in model offers little difference to the natural model used, bar it's subjectively lower-quality aesthetics.

Article and author information

Author details

  1. Blayze Millward

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    b.f.millward@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9025-1484
  2. Steve Maddock

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3179-0263
  3. Michael Mangan

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Engineering and Physical Sciences Research Council (EP/P006094/1)

  • Blayze Millward

Engineering and Physical Sciences Research Council (EP/S030964/1)

  • Michael Mangan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Millward et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,326
    views
  • 152
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Blayze Millward
  2. Steve Maddock
  3. Michael Mangan
(2022)
CompoundRay, an open-source tool for high-speed and high-fidelity rendering of compound eyes
eLife 11:e73893.
https://doi.org/10.7554/eLife.73893

Share this article

https://doi.org/10.7554/eLife.73893

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.