CompoundRay, an open-source tool for high-speed and high-fidelity rendering of compound eyes

  1. Blayze Millward  Is a corresponding author
  2. Steve Maddock
  3. Michael Mangan
  1. University of Sheffield, United Kingdom

Abstract

Revealing the functioning of compound eyes is of interest to biologists and engineers alike who wish to understand how visually complex behaviours (e.g. detection, tracking, navigation) arise in nature, and to abstract concepts to develop novel artificial sensory systems. A key investigative method is to replicate the sensory apparatus using artificial systems, allowing for investigation of the visual information that drives animal behaviour when exposed to environmental cues. To date, 'Compound Eye Models' (CEMs) have largely explored features such field of view and angular resolution, but the role of shape and overall structure have been largely overlooked due to modelling complexity. Modern real-time raytracing technologies are enabling the construction of a new generation of computationally fast, high-fidelity CEMs. This work introduces a new open-source CEM software (CompoundRay) that is capable of accurately rendering the visual perspective of bees (6,000 individual ommatidia arranged on two realistic eye surfaces) at over 3,000 frames per second. We show how the speed and accuracy facilitated by this software can be used to investigate pressing research questions (e.g. how low resolutions compound eyes can localise small objects) using modern methods (e.g. ML information exploration).

Data availability

The manuscript is a computational study, with all modelling code and data accessible on GitHub at https://github.com/ManganLab/eye-rendererUse of the natural environment was kindly provided by Dr. JoeWoodgate, Queen Mary University of London and is subject to upcoming publication. As such, instead included in the CompoundRay repository is a stand-in natural 3D terrain model. As all models are used for demonstrative purpose, this stand-in model offers little difference to the natural model used, bar it's subjectively lower-quality aesthetics.

Article and author information

Author details

  1. Blayze Millward

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    b.f.millward@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9025-1484
  2. Steve Maddock

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3179-0263
  3. Michael Mangan

    Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Engineering and Physical Sciences Research Council (EP/P006094/1)

  • Blayze Millward

Engineering and Physical Sciences Research Council (EP/S030964/1)

  • Michael Mangan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Albert Cardona, University of Cambridge, United Kingdom

Version history

  1. Received: September 14, 2021
  2. Preprint posted: September 23, 2021 (view preprint)
  3. Accepted: October 12, 2022
  4. Accepted Manuscript published: October 13, 2022 (version 1)
  5. Version of Record published: October 26, 2022 (version 2)

Copyright

© 2022, Millward et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,054
    views
  • 127
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Blayze Millward
  2. Steve Maddock
  3. Michael Mangan
(2022)
CompoundRay, an open-source tool for high-speed and high-fidelity rendering of compound eyes
eLife 11:e73893.
https://doi.org/10.7554/eLife.73893

Share this article

https://doi.org/10.7554/eLife.73893

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.