Quantification of protein abundance and interaction defines a mechanism for operation of the circadian clock

  1. Alex Ashton Koch
  2. James S Bagnall
  3. Nicola J Smyllie
  4. Nicola Begley
  5. Antony D Adamson
  6. Jennifer L Fribourgh
  7. David G Spiller
  8. Qing-Jun Meng
  9. Carrie L Partch
  10. Korbinian Strimmer
  11. Thomas A House
  12. Michael H Hastings
  13. Andrew SI Loudon  Is a corresponding author
  1. University of Manchester, United Kingdom
  2. Medical Research Council, United Kingdom
  3. University of California, Santa Cruz, United States

Abstract

The mammalian circadian clock exerts control of daily gene expression through cycles of DNA binding. Here we develop a quantitative model of how a finite pool of BMAL1 protein can regulate thousands of target sites over daily time scales. We used quantitative imaging to track dynamic changes in endogenous labelled proteins across peripheral tissues and the SCN. We determine the contribution of multiple rhythmic processes coordinating BMAL1 DNA binding, including cycling molecular abundance, binding affinities and repression. We find nuclear BMAL1 concentration determines corresponding CLOCK through heterodimerization and define a DNA residence time of this complex. Repression of CLOCK:BMAL1 is achieved through rhythmic changes to BMAL1:CRY1 association and high affinity interactions between PER2:CRY1 which mediates CLOCK:BMAL1 displacement from DNA. Finally, stochastic modelling reveals a dual role for PER:CRY complexes in which increasing concentrations of PER2:CRY1 promotes removal of BMAL1:CLOCK from genes consequently enhancing ability to move to new target sites.

Data availability

Modelling and analtyical code has been made publicly available via GitHub. The FCS analysis software is at https://github.com/LoudonLab/FcsAnalysisPipeline and the modeling link is https://github.com/LoudonLab/CLOCK-BMAL1-DNA-Binding.Source Data files have been provided for all FCS measurements and FRAP measurements in Figures 1, 2, 3 ,4, and 6.

The following data sets were generated

Article and author information

Author details

  1. Alex Ashton Koch

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. James S Bagnall

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicola J Smyllie

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicola Begley

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Antony D Adamson

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer L Fribourgh

    Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David G Spiller

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Qing-Jun Meng

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9426-8336
  9. Carrie L Partch

    Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4677-2861
  10. Korbinian Strimmer

    Department of Mathematics, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas A House

    Department of Mathematics, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael H Hastings

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Andrew SI Loudon

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    For correspondence
    andrew.loudon@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3648-445X

Funding

Biotechnology and Biological Sciences Research Council (BB/P017347/1)

  • James S Bagnall
  • Nicola Begley
  • Andrew SI Loudon

Biotechnology and Biological Sciences Research Council (BB/P017355/1)

  • Nicola J Smyllie
  • Michael H Hastings

Medical Research Council (MC_U105170643)

  • Michael H Hastings

National Institutes of Health (GM107069)

  • Carrie L Partch

National Institutes of Health (GM141849)

  • Carrie L Partch

Wellcome Trust (107851/Z/15/Z)

  • Andrew SI Loudon

Wellcome Trust (216416/Z/19/Z)

  • Alex Ashton Koch

University of California

  • Jennifer L Fribourgh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Ethics

Animal experimentation: All experimental procedures were carried out in accordance with the Animals (Scientific Procedures) Act of 1986, UK (License number PP7901495).

Version history

  1. Preprint posted: August 28, 2021 (view preprint)
  2. Received: September 16, 2021
  3. Accepted: March 11, 2022
  4. Accepted Manuscript published: March 14, 2022 (version 1)
  5. Version of Record published: April 5, 2022 (version 2)

Copyright

© 2022, Koch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,730
    views
  • 300
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex Ashton Koch
  2. James S Bagnall
  3. Nicola J Smyllie
  4. Nicola Begley
  5. Antony D Adamson
  6. Jennifer L Fribourgh
  7. David G Spiller
  8. Qing-Jun Meng
  9. Carrie L Partch
  10. Korbinian Strimmer
  11. Thomas A House
  12. Michael H Hastings
  13. Andrew SI Loudon
(2022)
Quantification of protein abundance and interaction defines a mechanism for operation of the circadian clock
eLife 11:e73976.
https://doi.org/10.7554/eLife.73976

Share this article

https://doi.org/10.7554/eLife.73976

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.