Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response

  1. Amelia E Hinman
  2. Charul Jani
  3. Stephanie C Pringle
  4. Wei R Zhang
  5. Neharika Jain
  6. Amanda J Martinot
  7. Amy K Barczak  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Tufts University Cummings School of Veterinary Medicine, United States

Abstract

For many intracellular pathogens, the phagosome is the site of events and interactions that shape infection outcome. Phagosomal membrane damage, in particular, is proposed to benefit invading pathogens. To define the innate immune consequences of this damage, we profiled macrophage transcriptional responses to wild-type Mycobacterium tuberculosis (Mtb) and mutants that fail to damage the phagosomal membrane. We identified a set of genes with enhanced expression in response to the mutants. These genes represented a late component of the TLR2-dependent transcriptional response to Mtb, distinct from an earlier component that included Tnf. Expression of the later component was inherent to TLR2 activation, dependent upon endosomal uptake, and enhanced by phagosome acidification. Canonical Mtb virulence factors that contribute to phagosomal membrane damage blunted phagosome acidification and undermined the endosome-specific response. Profiling cell survival and bacterial growth in macrophages demonstrated that the attenuation of these mutants is partially dependent upon TLR2. Further, TLR2 contributed to the attenuated phenotype of one of these mutants in a murine model of infection. These results demonstrate two distinct components of the TLR2 response and identify a component dependent upon endosomal uptake as a point where pathogenic bacteria interfere with the generation of effective inflammation. This interference promotes TB pathogenesis in both macrophage and murine infection models.

Data availability

RNAseq data is accessible on the NCBI GEO website GSE144330.

The following data sets were generated

Article and author information

Author details

  1. Amelia E Hinman

    The Ragon Institute, Massachusetts General Hospital, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Charul Jani

    The Ragon Institute, Massachusetts General Hospital, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephanie C Pringle

    The Ragon Institute, Massachusetts General Hospital, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei R Zhang

    The Ragon Institute, Massachusetts General Hospital, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Neharika Jain

    Tufts University Cummings School of Veterinary Medicine, Grafton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda J Martinot

    Tufts University Cummings School of Veterinary Medicine, Grafton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Amy K Barczak

    Medicine/Infectious Diseases, Massachusetts General Hospital, Cambridge, United States
    For correspondence
    ABARCZAK@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3806-2381

Funding

MGH Transformative Scholar Award

  • Amy K Barczak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with guidelines of the Massachusetts General Hospital Institutional Care and Use Committee, under the approved protocols 2014N000297 and 2014N000311.

Copyright

© 2021, Hinman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,764
    views
  • 283
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amelia E Hinman
  2. Charul Jani
  3. Stephanie C Pringle
  4. Wei R Zhang
  5. Neharika Jain
  6. Amanda J Martinot
  7. Amy K Barczak
(2021)
Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response
eLife 10:e73984.
https://doi.org/10.7554/eLife.73984

Share this article

https://doi.org/10.7554/eLife.73984

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.