Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells

  1. Di Peng
  2. Koji Ando  Is a corresponding author
  3. Melina Hußmann
  4. Marleen Gloger
  5. Renae Skoczylas
  6. Naoki Mochizuki.
  7. Christer Betsholtz
  8. Shigetomo Fukuhara
  9. Stefan Schulte-Merker
  10. Nathan D Lawson
  11. Katarzyna Koltowska  Is a corresponding author
  1. Uppsala University, Sweden
  2. Nippon Medical School, Japan
  3. WWU Münster, Germany
  4. National Cerebral and Cardiovascular Center, Japan
  5. University of Massachusetts Medical School, United States

Abstract

The migration of lymphatic endothelial cells (LECs) is key for the development of the complex and vast lymphatic vascular network that pervades most tissues in an organism. In zebrafish, arterial intersegmental vessels together with chemokines have been shown to promote lymphatic cell migration from the horizontal myoseptum (HM). We observed that emergence of mural cells around the intersegmental arteries coincides with lymphatic departure from HM which raised the possibility that arterial mural cells promote LEC migration. Our live imaging and cell ablation experiments revealed that LECs migrate slower and fail to establish the lymphatic vascular network in the absence of arterial mural cells. We determined that mural cells are a source for the C-X-C motif chemokine 12 (Cxcl12a and Cxcl12b), Vascular endothelial growth factor C (Vegfc) and Collagen and calcium-binding EGF domain-containing protein 1 (Ccbe1). We showed that chemokine and growth factor signalling function cooperatively to induce robust LEC migration. Specifically, Vegfc-Vegfr3 signalling, but not chemokines, induces extracellular signal-regulated kinase (ERK) activation in LECs, and has an additional pro-survival role in LECs during the migration. Together, the identification of mural cells as a source for signals that guide LEC migration and survival will be important in the future design for rebuilding lymphatic vessels in disease contexts.

Data availability

All data generated or analysed during this study are included in the manuscript and all the source are uploaded

The following previously published data sets were used

Article and author information

Author details

  1. Di Peng

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Koji Ando

    Department of Molecular Pathophysiology, Nippon Medical School, Kawasaki, Japan
    For correspondence
    koji-ando@nms.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  3. Melina Hußmann

    Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Marleen Gloger

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3319-7642
  5. Renae Skoczylas

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8570-7368
  6. Naoki Mochizuki.

    Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Christer Betsholtz

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Shigetomo Fukuhara

    Department of Molecular Pathophysiology, Nippon Medical School, Kawasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Stefan Schulte-Merker

    Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Nathan D Lawson

    Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7788-9619
  11. Katarzyna Koltowska

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    For correspondence
    kaska.koltowska@igp.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6841-8900

Funding

Knut och Alice Wallenbergs Stiftelse (2017.0144)

  • Katarzyna Koltowska

Ragnar Söderbergs stiftelse (M13/17)

  • Katarzyna Koltowska

Vetenskapsrådet (VR-MH-2016-01437)

  • Katarzyna Koltowska

Ragnar Söderbergs stiftelse (M13/17)

  • Di Peng

Jeanssons Stiftelser (n/a)

  • Katarzyna Koltowska

Deutsche Forschungsgemeinschaft (CRC1348B08)

  • Melina Hußmann

Deutsche Forschungsgemeinschaft (CRC1348B08)

  • Stefan Schulte-Merker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gou Young Koh, Institute of Basic Science and Korea Advanced Institute of Science and Technology (KAIST), Korea (South), Republic of

Ethics

Animal experimentation: Animal experiments were carried out under ethical approval from the Swedish Board of Agriculture (5.2.18-7558/14).

Version history

  1. Preprint posted: June 30, 2021 (view preprint)
  2. Received: September 22, 2021
  3. Accepted: March 21, 2022
  4. Accepted Manuscript published: March 22, 2022 (version 1)
  5. Version of Record published: April 25, 2022 (version 2)
  6. Version of Record updated: June 12, 2023 (version 3)

Copyright

© 2022, Peng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,669
    Page views
  • 276
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Di Peng
  2. Koji Ando
  3. Melina Hußmann
  4. Marleen Gloger
  5. Renae Skoczylas
  6. Naoki Mochizuki.
  7. Christer Betsholtz
  8. Shigetomo Fukuhara
  9. Stefan Schulte-Merker
  10. Nathan D Lawson
  11. Katarzyna Koltowska
(2022)
Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells
eLife 11:e74094.
https://doi.org/10.7554/eLife.74094

Share this article

https://doi.org/10.7554/eLife.74094

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.