Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes
Abstract
Brain region size generally scales allometrically with brain size, but mosaic shifts in brain region size independent of brain size have been found in several lineages and may be related to the evolution of behavioral novelty. African weakly electric fishes (Mormyroidea) evolved a mosaically enlarged cerebellum and hindbrain, yet the relationship to their behaviorally novel electrosensory system remains unclear. We addressed this by studying South American weakly electric fishes (Gymnotiformes) and weakly electric catfishes (Synodontis spp.), which evolved varying aspects of electrosensory systems, independent of mormyroids. If the mormyroid mosaic increases are related to evolving an electrosensory system, we should find similar mosaic shifts in gymnotiforms and Synodontis. Using micro-computed tomography scans, we quantified brain region scaling for multiple electrogenic, electroreceptive, and non-electrosensing species. We found mosaic increases in cerebellum in all three electrogenic lineages relative to non-electric lineages and mosaic increases in torus semicircularis and hindbrain associated with the evolution of electrogenesis and electroreceptor type. These results show that evolving novel electrosensory systems is repeatedly and independently associated with changes in the sizes of individual major brain regions independent of brain size, suggesting that selection can impact structural brain composition to favor specific regions involved in novel behaviors.
Data availability
Brain measurement data is located in Supplementary File 1. Brain mass data is located in Supplementary File 2. All analysis code and phylogenetic trees are available in Dryad. The raw micro-computed tomography scans are too large to post (multiple TBs), but are available upon request. To request raw otophysan and/or osteoglossiform scans, contact the corresponding author. We ask that those who want access to the scan data send us an external hard drive, which we will upload all the data to and then return.
-
Data from: Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishesDryad Digital Repository, doi:10.5061/dryad.7d7wm37w5.
-
Data from: Brain mass and body mass datasets and phylogenies linked to brain-body allometry and the encephalization of birds and mammals.Figshare, doi:10.6084/m9.figshare.6803276.v1.
-
Data from: Exceptionally Steep Brain-Body Evolutionary Allometry Underlies the Unique Encephalization of OsteoglossiformesBrain Behav Evol, Supplementary Material, doi:10.1159/000519067.
-
Data from: Extreme Enlargement of the Cerebellum in a Clade of Teleost Fishes that Evolved a Novel Active Sensory SystemCurr Biol, doi:10.1016/j.cub.2018.10.038.
Article and author information
Author details
Funding
National Science Foundation (IOS-1755071)
- Bruce A Carlson
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The methods in this study are consistent with euthanasia guidelines by the American Veterinary Medical Association and have been approved by the Animal Care and Use Committee at Washington University in St. Louis (Protocol ID 19-0974).
Copyright
© 2022, Schumacher & Carlson
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,393
- views
-
- 299
- downloads
-
- 12
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.
-
- Evolutionary Biology
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.