KLC4 shapes axon arbors during development and mediates adult behavior

  1. Elizabeth M Haynes
  2. Korri H Burnett
  3. Jiaye He
  4. Marcel W Jean-Pierre
  5. Martin Jarzyna
  6. Kevin W Eliceiri
  7. Jan Huisken
  8. Mary C Halloran  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. National Innovation Center for Advanced Medical Devices, China
  3. Morgridge Institute for Research, United States

Abstract

Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.

Data availability

All data generated or analyzed in this study are included in the manuscript and supporting files. Source Data files have been provided for Figures 1-12.

Article and author information

Author details

  1. Elizabeth M Haynes

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  2. Korri H Burnett

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  3. Jiaye He

    National Innovation Center for Advanced Medical Devices, Shenzen, China
    Competing interests
    No competing interests declared.
  4. Marcel W Jean-Pierre

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Martin Jarzyna

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  6. Kevin W Eliceiri

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    Kevin W Eliceiri, is a consultant for Bruker, the manufacturer of the Opterra swept field confocal used in this work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8678-670X
  7. Jan Huisken

    Morgridge Institute for Research, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7250-3756
  8. Mary C Halloran

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    mchalloran@wisc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6086-5928

Funding

National Institutes of Health (R01 NS086934)

  • Mary C Halloran

National Institutes of Health (R21 NS116326)

  • Mary C Halloran

National Institutes of Health (F32 NS098689)

  • Elizabeth M Haynes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animals were handled according to approved institutional animal care and use committee protocols of the University of Wisconsin (protocols L005692 and L005704).

Copyright

© 2022, Haynes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,522
    views
  • 236
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth M Haynes
  2. Korri H Burnett
  3. Jiaye He
  4. Marcel W Jean-Pierre
  5. Martin Jarzyna
  6. Kevin W Eliceiri
  7. Jan Huisken
  8. Mary C Halloran
(2022)
KLC4 shapes axon arbors during development and mediates adult behavior
eLife 11:e74270.
https://doi.org/10.7554/eLife.74270

Share this article

https://doi.org/10.7554/eLife.74270

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    John Yong, Jacqueline E Villalta ... Calvin H Jan
    Research Article

    Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.