A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up or down scaling

Abstract

Homeostatic synaptic plasticity requires widespread remodeling of synaptic signaling and scaffolding networks, but the role of posttranslational modifications in this process has not been systematically studied. Using deepscale quantitative analysis of the phosphoproteome in mouse neocortical neurons, we found wide-spread and temporally complex changes during synaptic scaling up and down. We observed 424 bidirectionally modulated phosphosites that were strongly enriched for synapse-associated proteins, including S1539 in the ASD-associated synaptic scaffold protein Shank3. Using a parallel proteomic analysis performed on Shank3 isolated from rat neocortical neurons by immunoaffinity, we identified two sites that were persistently hypo-phosphorylated during scaling up and transiently hyper-phosphorylated during scaling down: one (rat S1615) that corresponded to S1539 in mouse, and a second highly conserved site, rat S1586. The phosphorylation status of these sites modified the synaptic localization of Shank3 during scaling protocols, and dephosphorylation of these sites via PP2A activity was essential for the maintenance of synaptic scaling up. Finally, phosphomimetic mutations at these sites prevented scaling up but not down, while phosphodeficient mutations prevented scaling down but not up. These mutations did not impact baseline synaptic strength, indicating that they gate, rather than drive, the induction of synaptic scaling. Thus an activity-dependent switch between hypo- and hyperphosphorylation at S1586 and S1615 of Shank3 enables scaling up or down, respectively. Collectively our data show that activity-dependent phosphoproteome dynamics are important for the functional reconfiguration of synaptic scaffolds, and can bias synapses toward upward or downward homeostatic plasticity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data for Figures 2-7 have been provided.The original mass spectra and the protein sequence databases used for searches have been deposited in the public proteomics repository MassIVE (http://massive.ucsd.edu) and are accessible at ftp://MSV000087926@massive.ucsd.edu.

The following data sets were generated

Article and author information

Author details

  1. Chi-Hong Wu

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6391-0747
  2. Vedakumar Tatavarty

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre MJ Beltran

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Guerrero

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5324-8232
  5. Hasmik Keshishian

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Karsten Krug

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Melanie A MacMullan

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5296-5902
  8. Li Li

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Steven A Carr

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeffrey R Cottrell

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Gina G Turrigiano

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    turrigiano@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4476-4059

Funding

National Institute of Neurological Disorders and Stroke (R35 NS111562)

  • Gina G Turrigiano

Simons Foundation Autism Research Initiative (345485)

  • Gina G Turrigiano

National Heart, Lung, and Blood Institute (F32 HL154711)

  • Pierre MJ Beltran

Stanley Center for Psychiatric Research, Broad Institute

  • Jeffrey R Cottrell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed according to NIH guidelines and were approved by the Broad Institute of MIT and Harvard IACUC (mouse cultures) or the Brandeis University IACUC (rat cultures, protocol # 21002).

Copyright

© 2022, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,362
    views
  • 399
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chi-Hong Wu
  2. Vedakumar Tatavarty
  3. Pierre MJ Beltran
  4. Andrea Guerrero
  5. Hasmik Keshishian
  6. Karsten Krug
  7. Melanie A MacMullan
  8. Li Li
  9. Steven A Carr
  10. Jeffrey R Cottrell
  11. Gina G Turrigiano
(2022)
A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up or down scaling
eLife 11:e74277.
https://doi.org/10.7554/eLife.74277

Share this article

https://doi.org/10.7554/eLife.74277

Further reading

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.

    1. Cell Biology
    2. Developmental Biology
    Yan Zhang, Hua Zhang
    Insight

    Long thought to have little relevance to ovarian physiology, the rete ovarii may have a role in follicular dynamics and reproductive health.