Polyunsaturated fatty acids inhibit a pentameric ligand-gated ion channel through one of two binding sites

Abstract

Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.

Data availability

Figure 4- source data 1 contains the numerical data used to generate Figure 4A and 4B. Figure 4- source data 2 contains the numerical data used to generate Figure 4C and Figure 4- figure supplement 5. Figure 4- source data 3 contains the statistical analysis (linear mixed effects model) for Figure 4- figure supplement 5.

Article and author information

Author details

  1. Noah M Dietzen

    Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark J Arcario

    Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5017-1519
  3. Lawrence J Chen

    Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John T Petroff II

    Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1323-0273
  5. K Trent Moreland

    Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathiresan Krishnan

    Department of Developmental Biology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Grace Brannigan

    Center for the Computational and Integrative Biology, Rutgers University, Camden, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas F Covey

    Department of Developmental Biology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wayland WL Cheng

    Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
    For correspondence
    wayland.cheng@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9529-9820

Funding

National Institutes of Health (R35GM137957)

  • Wayland WL Cheng

National Institutes of Health (F32GM139351)

  • John T Petroff II

National Institutes of Health (R01HL067773)

  • Douglas F Covey

National Institutes of Health (R01GM108799)

  • Douglas F Covey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcel P Goldschen-Ohm, University of Texas at Austin, United States

Version history

  1. Received: September 29, 2021
  2. Preprint posted: October 8, 2021 (view preprint)
  3. Accepted: December 31, 2021
  4. Accepted Manuscript published: January 4, 2022 (version 1)
  5. Accepted Manuscript updated: January 7, 2022 (version 2)
  6. Version of Record published: January 24, 2022 (version 3)

Copyright

© 2022, Dietzen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,482
    views
  • 263
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah M Dietzen
  2. Mark J Arcario
  3. Lawrence J Chen
  4. John T Petroff II
  5. K Trent Moreland
  6. Kathiresan Krishnan
  7. Grace Brannigan
  8. Douglas F Covey
  9. Wayland WL Cheng
(2022)
Polyunsaturated fatty acids inhibit a pentameric ligand-gated ion channel through one of two binding sites
eLife 11:e74306.
https://doi.org/10.7554/eLife.74306

Share this article

https://doi.org/10.7554/eLife.74306

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.