Cancer: Preventing collateral damage
Most patients with head and neck cancer will receive radiation therapy in order to kill or shrink their tumor (Alterio et al., 2019). During treatment, physicians try to minimize damage to surrounding, healthy tissues, but off-target doses often harm and kill the sensitive ‘serous acinar cells’ in the salivary parotid gland (Figure 1A). As a result, many patients go on to produce less saliva and develop a persistent dry mouth, also known as xerostomia. This is not a benign condition: people may experience loss of taste, difficulty chewing, swallowing or speaking and, in the long term, tooth and gum decay that can lead to malnutrition (Jensen et al., 2019).
Few interventions exist to stop this side effect from emerging, aside from technical refinements that limit the exposure of the glands to radiation (Mercadante et al., 2021). Now, in eLife, Songlin Wang and colleagues at Capital Medical University – including Xiaoyu Feng and Zhifang Wu as joint first authors – report a remarkably simple measure that may protect salivary glands during radiation therapy (Feng et al., 2021).
In the body, these glands are an important component of the nitrate cycle, taking up about 25% of the inorganic nitrate present in the blood, concentrating it and then secreting it into the saliva (Lundberg et al., 2018). This nutrient, abundant in leafy greens and many fruits, was once reviled for potentially causing cancer but it is now viewed as a normal component of a healthy diet. It can even help to boost the regeneration of certain heart cells (Lundberg et al., 2018; Marino et al., 2021).
Feng et al. used miniature pigs – whose salivary glands are structurally similar to those of humans – to investigate whether nitrate could help protect against xerostomia after radiation therapy. Animals that were fed daily doses of inorganic nitrate before treatment did not experience a sharp drop in saliva production, and they recovered 80% of their salivary flow within two years.
These benefits were both dose- and time- dependent: higher amounts of supplementary nitrate led to better salivary gland function, but administering the nutrients for the first time two months after treatment yielded minimal results. In the laboratory, adding inorganic nitrate to cells derived from human parotid tissues revealed a similar radioprotective effect. Taken together, these results strongly support supplementing patient’s diets with nitrate to prevent xerostomia.
Exactly how nitrate can protect cells against radiation is not fully understood, but it may involve sialin, a transport protein that helps to usher the nutrient inside serous acinar cells. Feng et al. showed that radiation caused the levels of sialin to rapidly fall. Adding nitrate before treatment, however, boosted the level of sialin, and therefore the amount of the nutrient inside cells. Additional experiments suggest that nitrate then increases the production of sialin, creating a positive feedback loop that activates the EGFR-AKT-MAPK pathway (Figure 1B). This biochemical circuit is known to stimulate cell growth and block programmed cell death (Seshacharyulu et al., 2012). The production of sialin in response to nitrate appeared to be the critical trigger for EGFR activation, which may explain why supplementation was only effective if administered before radiation therapy.
Extrapolating from animal and cell-based models to humans is always uncertain (Mak et al., 2014). Perhaps the most exciting aspect of the work by Feng et al. is that its main conclusion is easy to test, through randomized clinical trials that monitor salivary function (and potentially nitrate levels) before, during and after radiation therapy. This will ultimately help to determine whether nitrate supplementation could offer a low-tech solution to a high-tech problem. If the stunning results presented by Feng et al. translate to humans, this approach may have a major impact on cancer patients experiencing xerostomia.
References
-
Modern radiotherapy for head and neck cancerSeminars in Oncology 46:233–245.https://doi.org/10.1053/j.seminoncol.2019.07.002
-
Lost in translation: animal models and clinical trials in cancer treatmentAmerican Journal of Translational Research 6:114–118.
-
Salivary gland hypofunction and/or xerostomia induced by nonsurgical cancer therapies: ISOO/MASCC/ASCO GuidelineJournal of Clinical Oncology 39:2825–2843.https://doi.org/10.1200/JCO.21.01208
-
Targeting the EGFR signaling pathway in cancer therapyExpert Opinion on Therapeutic Targets 16:15–31.https://doi.org/10.1517/14728222.2011.648617
Article and author information
Author details
Publication history
Copyright
© 2021, Quon and Bunz
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 411
- views
-
- 20
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.
-
- Cell Biology
- Genetics and Genomics
Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.