Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies

  1. Jun Xu  Is a corresponding author
  2. Ah-Ram Kim
  3. Ross W Cheloha
  4. Fabian A Fischer
  5. Joshua Shing Shun Li
  6. Yuan Feng
  7. Emily Stoneburner
  8. Richard Binari
  9. Stephanie E Mohr
  10. Jonathan Zirin
  11. Hidde L Ploegh
  12. Norbert Perrimon  Is a corresponding author
  1. Department of Genetics, Harvard Medical School, United States
  2. Boston Children's Hospital and Harvard Medical School, United States
  3. Drosophila RNAi Screening Center, Harvard Medical School, United States
  4. Howard Hughes Medical Institute, United States
6 figures, 1 table and 2 additional files

Figures

Figure 1 with 2 supplements
VHH05 and 127D01 NanoTag sequences and their corresponding nanobodies, and use of nanobodies as chromobodies.

(A and C) VHH05 and 127D01 were inserted at the N-terminus, internally or at the C-terminus of a protein of interest (POI). GSG denotes the linker, M is the start codon, and Stop is the stop codon. (B and D) Nanobody sequences of NbVHH05 and Nb127D01. Bolded and underlined CDR1-3 corresponds to complementarity-determining regions (CDRs). (E) Co-transfection of pAW-actin5C-NbVHH05-GFP and pAW-actin5C-VHH05-H2B-mCherry into S2R+ cells. H2B is a nuclear protein. The right most panel is GFP, the center panel is mCherry, and the rightmost is the merged image. 4′,6-Diamidino-2-phenylindole (DAPI) staining shows the nuclei. (F) Co-transfection of pAW-actin5C-NbVHH05-GFP and pAW-actin5C-CD8-VHH05-mCherry into S2R+ cells. CD8 is a cell membrane protein. (G) Co-transfection of pAW-actin5C-NbVHH05-GFP and pAW-actin5C-mito-mCherry-VHH05 into S2R+ cells. Mito-mCherry-VHH05 contains a localization signal peptide for mitochondrial outer membrane targeting. (H, I, and J) Experiments are as in E, F, and G, except that pAW-actin5C-Nb127D01-GFP and pAW-actin5C-127D01-H2B-mCherry were co-transfected.

Figure 1—figure supplement 1
Identification of the 127D01 epitope.

(A) Synthetic peptides corresponding to the full-length extracellular domain from C-X-C chemokine receptor type 2 (CXCR2) or fragments were synthesized by solid-phase peptide synthesis using Fmoc protection of the peptide backbone and purified by reverse-phase HPLC. (B) Peptides were used in a competitive ELISA in which soluble peptides compete for binding with a conjugate consisting of GFP fused with CXCR2 ECD immobilized on the ELISA plate. (C) Representative data from a competition ELISA experiment. Data points represent mean ± SD from duplicate experiments.

Figure 1—figure supplement 2
Schematic representation of the constructs and confocal images in S2R+ cells.

(A and B) Transcriptional elements promoter and SV40 of the expression vectors, the different protein coding modules are represented as colored filled boxes. (C and D) Individual transfection results of VHH05 and 127D01 vectors in S2R+ cells. Confocal images show the distribution of fluorescent proteins in the cell. DAPI staining shows the nuclei. (E) Confocal images of co-transfection of NbVHH05-GFP with different cell compartments mCherry-VHH05 vectors showed the co-localization signal of GFP and mCherry. (F) Confocal images of co-transfection of Nb127D01-GFP with different cell compartments. mCherry-127D01 vectors showed the co-localization signal of GFP and mCherry. (G) Vectors information of NbVHH05-mCherry and mito-GFP-VHH05. Confocal images of co-transfection of these two vectors showed the co-localization signal of GFP and mCherry. (H) Vector information of Nb127D01-mCherry and mito-GFP-127D01. Confocal images of co-transfection of these two vectors showed the co-localization signal of GFP and mCherry. Scale bars: 25 μm.

Figure 2 with 3 supplements
Using NbVHH05 and Nb127D01 for immunofluorescence.

(A) Fluorophore-conjugated NbVHH05 or Nb127D01 recognizes VHH05- or 127D01-tagged fluorescence proteins. (A’) VHH05- or 127D01-tagged mito-GFP can be detected by the corresponding NbVHH05-555 or Nb127D01-647 in transfected S2R+ cells. 4′,6-Diamidino-2-phenylindole (DAPI) staining shows the nuclei. (B) Schematic of nanobodies containing ALFA-tag as primary antibody and NbALFA as a secondary antibody. (B’) VHH05- or 127D01-tagged mito-GFP can be detected using the corresponding nanobodies in transfected S2R+ cells. (C) Schematic of fluorophore-conjugated anti-Alpaca IgG antibodies to detect VHH05- and 127D01-tagged proteins. NbVHH05 or Nb127D01 is used as primary antibodies and anti-Alpaca IgG as secondary antibody. (C’) VHH05- or 127D01-tagged mito-GFP can be detected using the corresponding nanobodies and anti-Alpaca IgG-647 in transfected S2R+ cells. (D) Schematic of using VHH05 and 127D01 for double tagging. N-, C-terminal of REPTOR contains VHH05 and 127D01. (D’) Co-staining NbVHH05 and Nb127D01 in S2R+ cells transfected with VHH05-REPTOR-127D01. Scale bars: 10 µm.

Figure 2—figure supplement 1
Nanobody purification and fluorophore conjugation.

(A) Fluorescence signals of NbVHH05-CF555 and Nb127D01-CF647 under 555 and 647 detection channels. (B and C) Coomassie brilliant blue staining of ALFA- and HA-tagged nanobodies purified from Escherichia coli protein expression. FT: flow-through, E1–E9: elution 1–9.

Figure 2—figure supplement 1—source data 1

Raw data of fluorescence signals or coomassie brilliant blue staining for Figure 2—figure supplement 1.

https://cdn.elifesciences.org/articles/74326/elife-74326-fig2-figsupp1-data1-v2.zip
Figure 2—figure supplement 2
Different types of NbVHH05 and Nb127D01 and immunofluorescence examples.

(A) Direct labeling can be achieved by linking purified nanobodies with different fluorophores by antibody labeling kit or site-specifically by sortase-mediated labeling. (A1) Schematics of NbVHH05 and Nb127D01 with fluorophore-488, -555, or -647. (A2) Confocal images showing direct immunofluorescence with NbVHH05-555, NbVHH05-488, and Nb127D01-647 in S2R+ cells. (A3) Confocal images showing direct immunofluorescence with NbVHH05-555 prepared by sortase-mediated labeling. (B) Schematics of indirect labeling with nanobodies containing ALFA-tag, HA-tag, biotin, or human IgG as primary antibodies and confocal images in S2R+ cells. (B1) NbVHH05 and Nb127D01 detected with anti-VHH IgG antibody. (B2) NbVHH05 and Nb127D01 with ALFA-tag detected by NbALFA. (B3) NbVHH05 and Nb127D01 with HA-tag detected by anti-HA antibody. (B4) NbVHH05 and Nb127D01 with biotin prepared by sortase-mediated labeling detected by streptavidin. (B5) NbVHH05 and Nb127D01 with human IgG detected by anti-human IgG antibody. Scale bars: 10 µm.

Figure 2—figure supplement 3
Test of potential interaction between VHH05 and 127D01.

(A) Fluorescence confocal results showed no co-localization signal. Co-transfection of Nb127D01-GFP and mito-mCherry-VHH05 or H2B-mCherry-VHH05, NbVHH05-GFP and mito-mCherry-127D01 or H2B-mCherry-127D01 in S2R+ cells. (B) Western blots indicate no cross-interaction between the two systems. Lysates from S2R+ cells transfected with different types tagged vectors (as in Figure 1) or a mock control plasmid were analyzed by SDS-PAGE and western blotting. The blot was developed with NbVHH05-ALFA and Nb127D01-ALFA, followed by NbALFA-HRP or a mouse anti-tubulin primary antibody, and followed by anti-mouse IgG HRP.

Figure 3 with 2 supplements
Detection of NanoTagged target proteins by western blotting and immunoprecipitation.

(A) Lysates from S2R+ cells, transfected with different tagged plasmids (as used in Figure 1) or a mock control plasmid, were analyzed by SDS-PAGE and western blotting. The blot was developed with NbVHH05 and Nb127D01 followed by NbALFA-HRP or a mouse anti-tubulin primary antibody followed by anti-mouse IgG HRP. (B) Schematics depict VHH05- or 127D01-tagged secreted GFP proteins bound by NbVHH05-ALFA and Nb127D01-ALFA followed by NbALFA-HRP. Culture media from S2R+ cells transfected with secreted BiP-GFP-1xtag, BiP-GFP-2xtag, BiP-GFP-3xtag were used for the western blotting. Anti-FLAG antibody was used to show the GFP level. Histogram showing the relative gray value of anti-NbVHH05 or anti-Nb127D01 to anti-FLAG. (C) Western blots for S2R+ cell culture media containing double NanoTagged Upd2 protein: N- and C-terminus region of Upd2 contain VHH05 and 127D01, respectively, recognized by NbVHH05 or Nb127D01. The secondary antibodies were anti-hIgG-HRP, anti-ALFA-800, and Streptavidin-800. (D) Immunoprecipitation of FLAG-GFP-3xVHH05 using NbVHH05-ALFA and ALFA-resin. The control nanobody failed to capture FLAG-GFP-3xVHH05. (E) Immunoprecipitation of FLAG-GFP-3x127D01 using Nb127D01-ALFA and ALFA-resin. (F) Immunoprecipitation of FLAG-GFP-3x127D01 using Nb127D01-hIgG and Protein A magnetic bead.

Figure 3—figure supplement 1
Test of nanobody concentration gradient.

Lysates from S2R+ cells transfected with H2B-mCherry-VHH05 or H2B-mCherry-127D01 were analyzed by SDS-PAGE and western blotting. The blot was developed with NbVHH05-ALFA and Nb127D01-ALFA with a concentration gradient from 1:100, 1:1000, 1:10,000, 1:100,000, followed by NbALFA-HRP or a mouse anti-tubulin primary antibody followed by anti-mouse IgG HRP. Two conditions of long-time exposure (60 s) and short-time exposure (20 s) were set for signal reading.

Figure 3—figure supplement 2
Rapid production of nanobodies in S2 cells for western blots.

(A) Production workflow of nanobodies in the fly cell line. (B) Western blot using culture media containing Nb127D01-hIgG, detected by anti-hIgG-HRP. (C) Western blot using culture media containing NbVHH05-hIgG, detected by anti-hIgG-HRP. Five different concentrations and three exposure times were used.

Figure 4 with 1 supplement
Nanobody-based system for altering localization of NanoTagged proteins.

(A and B) Diagram showing the vectors used for the secreted protein trapping method. NbVHH05/Nb127D01 fused to mCherry contain KDEL and BiP signal peptide and is driven by the actin5C promoter. (C) Four independent cell transfection experiments were performed. In 1 and 3, only GFP-VHH05 or GFP-127D01 was transfected. In 2 and 4, NbVHH05-mCherry-KDEL with GFP-VHH05, or Nb127D01-mCherry-KDEL with GFP-127D01, were co-transfected. Images show the GFP and mCherry signal 48 hr after transfection. Nuclei are stained with 4′,6-diamidino-2-phenylindole (DAPI). (D) Immunoblots of GFP and tubulin in cell lysates from transfections 1–4.

Figure 4—figure supplement 1
Nanobody-based system for altering localization of NanoTagged proteins.

(A and B) Diagram showing the vectors used for cytoplasmic protein trapping. NbVHH05/Nb127D01 is fused to GFP and CD8, and driven by actin5C promoter. Target proteins are mCherry containing VHH05-tag or 127D01-tag at the C-terminus and mito signal at the N-terminus. (C) Results of transfection of mito-mCherry-NanoTag or co-transfection of CD8-NbVHH05-GFP/mito-mCherry-VHH05 and CD8-Nb127D01-GFP/mito-mCherry-127D01 in S2R+ cells. GFP, mCherry, and merged channels show protein expression levels with antibody staining.

Figure 5 with 2 supplements
Nanobodies expression in vivo.

(A–D) Lpp-Gal4 drives fat body expression of UAS-NbVHH05-GFP, UAS-NbVHH05-HA, UAS-Nb127D01-GFP, or UAS-Nb127D01-HA, detected by GFP or anti-HA immunostaining. (E and F) Western blot detection of cytoplasmic and secreted GFP- or HA-tagged nanobodies. Lysates from fat body or hemolymph were tested by anti-GFP, anti-HA, and anti-tubulin antibodies. Cytoplasmic-expressed nanobodies: UAS-NbVHH05-GFP, UAS-Nb127D01-GFP, UAS-NbVHH05-HA, and UAS-Nb127D01-HA. Secreted-expressed nanobodies: UAS-BiP-NbVHH05-GFP, UAS-BiP-Nb127D01-GFP, UAS-BiP-NbVHH05-HA, and UAS-BiP-Nb127D01-HA. (G–J) Confocal images of Drosophila adult guts expressing 127D01-EGFP/VHH05-GFP and VHH05-REPTOR-127D01 with or without rapamycin (Rapa) treatment for 15 hr. REPTOR shuttles into the nucleus upon Rapa treatment. (G and I) as controls only express 127D01-EGFP or VHH05-GFP in the ECs. (H) combines 127D01-EGFP with VHH05-REPTOR-127D01 and (J) combines VHH05-EGFP with VHH05-REPTOR-127D01.

Figure 5—figure supplement 1
Transgenic vector information and test in S2R+ cells.

(A) Series of UAS vectors expressing NbVHH05 and Nb127D01 fused to GFP and HA or containing BiP signal. Transcriptional elements such as the promoter and SV40 of the expression vectors, and the different protein coding modules are represented as colored filled boxes. (B) Lysates or culture media from S2R+ cells transfected with GFP vectors were analyzed by SDS-PAGE and by western blot. The blot was developed with anti-GFP antibody or anti-tubulin antibody. (C) Lysates or culture media from S2R+ cells transfected with HA vectors were analyzed by SDS-PAGE and by western blot. The blot was developed with anti-HA antibody or anti-tubulin antibody. (D) Two types of UAS vectors for overexpressing NanoTag-labeled genes. N-, C-terminal of protein of interest (POI) contains VHH05 and 127D01. BiP is the signal for labeling secreted proteins. (E) Five secreted proteins and three cytoplasm proteins were labeled, and their sizes are indicated. (F) Western blot results of three small size secreted proteins, Akh and Dilp8 showed multiple bands, and Dilp2 only showed a single band. (G) Western blot results of Pvf1, Upd2, REPTOR-bp-B, REPTOR-bp-C, REPTOR-bp-B. The blot was developed with NbVHH05-ALFA and Nb127D01-ALFA followed by NbALFA-HRP in F and G.

Figure 5—figure supplement 2
Immunostaining of double NanoTag-labeled proteins.

(A and B) are control Oregon-R flies stained with NbVHH05 and Nb127D01. (C and D) UAS-VHH05-REPTOR-bp-C-127D01 driven by Myo1Ats-Gal4 adult fly guts stained with NbVHH05 and Nb127D01. (E and F) UAS-BiP-VHH05-Upd2-127D01 driven by Myo1Ats-Gal4 adult fly guts stained with NbVHH05 and Nb127D01. Red box indicates an enlarged area of the gut.

Figure 6 with 2 supplements
Integration of 3x127D01 into Dilp2 shows a robust expression pattern in the brain.

(A) Workflow and schematic representation of the Dilp2 gene and the sgRNA targeting site. (B) PCR amplification was used to confirm the insertion. (C) Representative sequencing chromatogram of PCR products from the junction PCR. (D) Sequencing results of the DNA fragments showing 3x127D01-tag genome–donor integration. (E) Larval brains of w1118 and Dilp2−3x127D01 co-stained with anti-Dilp2 antibody and Nb127D01. Box demarcates Dilp2-expressing cells and Dilp2-positive neuronal projections. (F) Measurement of whole body trehalose concentration in y,w and y,w; Dilp2−3x127D01 flies. Data are represented as mean ± SD and two-tailed t-tests were used to generate p values, n.s. indicates statistically non-significant. (G) Nanobody immunostaining showing different Dilp2 expression after starvation. Red outline demarcates Dilp2-expressing cells and white outline demarcates Dilp2-positive neuronal projections. Scale bars: 100 µm.

Figure 6—source data 1

Raw data of agarose gel electrophoresis diagram for Figure 6B.

https://cdn.elifesciences.org/articles/74326/elife-74326-fig6-data1-v2.zip
Figure 6—figure supplement 1
Endogenous VHH05- or 127D01-tagging using CRISPR/Cas9.

Workflow (A), fly embryos transformation (B), genotyping (C), and applications (D). (A’) Common scarless vectors used for constructing donors. N-terminal vectors (PHD-N-3x127D01-donor or PHD-N-3xVHH05-donor) and C-terminal vectors (PHD-C-3x127D01-donor or PHD-C-3xVHH05-donor) contain EcoRI restriction enzyme sites that introduce the homologous arm sequences into donors. (B’) Workflow example for introducing knock-in (KI) tags into the third chromosome. (C’) Genotyping example of KI 3xVHH05-tag and 3x127D01-tag into the C-terminus of H2A variant (H2Av). Gel results showing the 5’ and 3’ PCR junctions. Representative sequencing chromatogram of PCR products from the junction PCR. (D’) Immunostaining of H2Av-3x127D01 and H2Av-3xVHH05. Adult male or female guts were dissected and stained with Nb127D01-HA or NbVHH05-HA. Scale bars: 20 µm.

Figure 6—figure supplement 2
Schematic representation of the CRISPR/Cas9-mediated gene knock-in approach and the targeted integration of transgene constructs.

(A) Schematic representation of the H2A variant (H2Av) gene and the sgRNA targeting site. The thin gray line represents the H2Av genomic locus, with open boxes indicating the promoter, exons, and poly(A) signal. A 164 bp fragment (gray box) located at the 5′ end represents the 5' UTR. The two 79, 119, and 233 bp fragments (pink boxes) are exon 1, exon 2, and exon 3, respectively. A 322 bp fragment (gray box) located at the 3′ end is the poly(A) signal. The red lightning icon indicates the sgRNA site. In the PHD donor construct, the DsRed2 marker expression cassette is driven by the eye-specific 3xP3 promoter. DNA fragments of 999 and 999 bp at the 5′ and 3′ ends were PCR-amplified, subcloned into vectors, and used as homology arms (5' HR and 3' HR, respectively). The 3xNanoTag sequence is shown in the green box. 3’ terminal repeat and 5’ terminal repeats are the piggyBac transposase recognition sequences. Primer positions for amplification analysis of the integrated insertions in transformed flies are shown by arrows. Primer pairs of F1/R1 and F2/R2 were used to amplify the 5′- and 3′-end insertion junctions, respectively. The donor plasmid and sgRNA were injected into the embryos and the donors integrated into the genome. Positive individuals were screened for red fluorescence of the eye. The selection marker was removed by crossing with flies expressing the transposase. Primer pairs of F3/R3 were used to amplify the final insertion. (B) PCR amplification was used to confirm the insertions. Two H2Av-3x127D01, four H2Av-3xVHH05 heterozygous, and w1118 genomic DNA were used as template and the thick gel bands showed the corrected insertion. (C) Sequencing results of the integrated diagnostic DNA fragments showing 3xtag genome–donor integration. (D and E) Indirect immunostaining of H2Av-3xVHH05 flies. Adult female guts were dissected and stained with NbVHH05-biotin and visualized by Streptavidin-488. (F and G) Direct immunostaining of H2Av-3xVHH05 flies. Adult female guts were dissected and stained with NbVHH05-555. (A and C) were w1118, (B and D) are H2Av-3xVHH05. Scale bars: 20 µm.

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
AntibodyMouse monoclonal anti-a-TubulinSigma-AldrichCat# T5168; RRID: AB_477579WB (1:10,000)
AntibodyMouse monoclonal anti-GFPInvitrogenCat# A11120; RRID: AB_221568IF (1:300)
AntibodyRabbit polyclonal anti-GFPMolecular ProbesCat# A-6455 RRID:AB_221570WB (1:10,000)
AntibodyRat monoclonal anti-HASigma-AldrichCat# 3 F10; RRID: AB_2314622WB (1:10,000) IF (1:1000)
AntibodyMouse monoclonal anti-FLAG M1Sigma-AldrichCat# F3040; RRID: AB_439712WB (1:5000)
AntibodyRabbit polyclonal anti-Dilp2Park et al., 2014N/AIF (0.5 µg/ml)
OtherNbALFA-HRPNanoTag BiotechnologiesCat# N1502-HRPWB (1:5000)
OtherNbALFA-Atto647NanoTag BiotechnologiesCat# N1502-At647N-LIF (1:500)
OtherNbALFA-800CWNanoTag BiotechnologiesCat# N1502-Li800-LWB (1:5000)
AntibodyGoat anti-alpaca IgG-647Jackson ImmunoResearchCat# 128-605-230 RRID: AB_2810930IF (1:500)
AntibodyMouse monoclonal anti-HA-Alexa Fluor 488Thermo Fisher ScientificCat# A-21287 RRID: AB_2535829IF (1:1000)
AntibodyGoat anti-human IgG Fc-HRPThermo Fisher ScientificCat# A18829 RRID: AB_2535606WB (1:5000)
AntibodyDonkey anti-human IgG-DyLight 680Thermo Fisher ScientificCat# SA5-10130 RRID: AB_2556710WB (1:5000)
Peptide, recombinant proteinStreptavidin-DyLight 800Thermo Fisher ScientificCat# 21851WB (1:5000)
Peptide, recombinant proteinStreptavidin-Alexa Fluor 488Thermo Fisher ScientificCat# S32354 RRID: AB_2315383IF (1:500)
OtherNbVHH05-HAThis paperN/AWB (1:5000) IF (1:500) See *Note
OtherNbVHH05-ALFAThis paperN/AWB (1:5000) IF (1:500) See *Note
OtherNbVHH05-hIgGThis paperN/AWB (1:100) IF (1:20) See *Note
OtherNbVHH05-555This paperN/AIF (1:500) See *Note
OtherNbVHH05-biotin (sortagging)This paperN/AIF (1:500) See *Note
OtherNbVHH05 –555 (sortagging)This paperN/AIF (1:500) See *Note
OtherNb127D01-HAThis paperN/AWB (1:5000) IF (1:500) See *Note
OtherNb127D01-ALFAThis paperN/AWB (1:5000) IF (1:500) See *Note
OtherNb127D01-hIgGThis paperN/AWB (1:100) IF (1:20) See *Note
OtherNb127D01-647This paperN/AIF (1:500) See *Note
Peptide, recombinant proteinPhusion polymeraseNew England BiolabsCat# M0530
Peptide, recombinant proteinQ5 polymeraseNew England BiolabsCat# M0494
Peptide, recombinant proteinTaq polymeraseClontechCat# TAKR001
Peptide, recombinant proteinEcoRINew England BiolabsCat# R0101
Peptide, recombinant proteinXbaINew England BiolabsCat# R0145
Peptide, recombinant proteinBglIINew England BiolabsCat# R0144
Peptide, recombinant proteinNheINew England BiolabsCat# R3131
Peptide, recombinant proteinNsiI-HFNew England BiolabsCat# R3127
Peptide, recombinant proteinNcoI-HFNew England BiolabsCat# R3193
Peptide, recombinant proteinXhoINew England BiolabsCat# R0146
Peptide, recombinant proteinBbsINew England BiolabsCat# R0539
Peptide, recombinant proteinAarIThermo Fisher ScientificCat# ER1581
Peptide, recombinant proteinT4PNKNew England BiolabsCat# M0201
Peptide, recombinant proteinT4 DNA ligaseNew England BiolabsCat# M0202
Peptide, recombinant proteinFetal bovine serumSigma-AldrichCat# A3912
Chemical compound, drugSchneider’s mediaThermo Fisher ScientificCat# 21720–024
Chemical compound, drugPenicillin-streptomycinThermo Fisher ScientificCat# 15070–063
Chemical compound, drugESF921 mediaExpression SystemsCat# 96–001
Peptide, recombinant proteinProteinase KRocheCat# 3115879001
Peptide, recombinant proteinRNase AThermo Fisher ScientificCat# EN0531
Peptide, recombinant proteinProtease and phosphatase inhibitor cocktailPierceCat# 78440
Chemical compound, drugTrypsin inhibitor benzamidineSigma-AldrichCat# 434760
Chemical compound, drugRapamycinLC LaboratoriesCat# R-5000
Peptide, recombinant proteinHRP-Conjugated StreptavidinThermo Fisher ScientificCat# N100
Peptide, recombinant proteinTrehalase (prokaryote)MegazymeCat# E-TREH
Commercial assay or kitGibson assemblyNew England BiolabsCat# E2611
Commercial assay or kitNEBuilder HiFi assemblyNew England BiolabsCat# E2621
Commercial assay or kitGolden Gate AssemblyNew England BiolabsCat# E1601
Commercial assay or kitpJET-1.2 vector kitFermentasCat# K1231
Commercial assay or kitQIAquick Gel Extraction KitQiagenCat# 28706
Commercial assay or kitQIAquick Spin ColumnsQiagenCat# 28115
Commercial assay or kitEffecteneQiagenCat# 301427
Commercial assay or kitB-PER II Bacterial Protein Extraction ReagentThermo Fisher ScientificCat# 78260
Commercial assay or kitMix-n-Stain CF 555 Antibody Labeling KitSigma-AldrichCat# MX555S100 RRID: AB_10960067
Commercial assay or kitMix-n-Stain CF 647 Antibody Labeling KitSigma-AldrichCat# MX647S100 RRID: AB_10961766
Commercial assay or kitNi-NTA resinEMD MilliporeCat# 70691–3
Commercial assay or kitPD-10 columnGE HealthcareCat# GE17-0851-01
Commercial assay or kitLysis bufferPierceCat# 87788
Commercial assay or kitSDS sample bufferThermo Fisher ScientificCat# 39001
Commercial assay or kit4–20% polyacrylamide gelBio-RadCat# 4561096
Commercial assay or kitEnhanced chemiluminescence (ECL) reagentsAmershamCat# RPN2209
Commercial assay or kitEnhanced chemiluminescence (ECL) reagentsPierceCat# 34095
Commercial assay or kitALFA Selector ST resinNanotag BiotechnologiesCat# N1511
Commercial assay or kitPierce IP lysis bufferThermo Fisher ScientificCat# 87787
Commercial assay or kitProtein A magnetic beadsBio-RadCat# 1614013
Commercial assay or kitTetramethylbenzidine-containing solutionThermo Fisher ScientificCat# N301
Commercial assay or kitGlucose Hexokinase ReagentsThermo Fisher ScientificCat# TR15421
Recombinant DNA reagentpAWPerrimon labN/ASee *Note
Recombinant DNA reagentpWalium10DGRCCat# 1470
Recombinant DNA reagentpMK-33GWPerrimon labN/ASee *Note
Recombinant DNA reagentpET-26bNovagenCat# 69862
Recombinant DNA reagentpQUASp-mCD8mCherryAddgeneCat# 46164 RRID: Addgene_46164
Recombinant DNA reagentpBac (3xP3-gTc’v; pUb:lox-mYFP-lox-H2BmCherry)AddgeneCat# 119064 RRID: Addgene_119064
Recombinant DNA reagentpcDNA4TO-mito-mCherry-10xGCN4_v4AddgeneCat# 60914 RRID: Addgene_60914
Recombinant DNA reagentPXL-IE1-EGFP-nos-Cas9Xu et al., 2020N/A
Recombinant DNA reagentpScarlessHD-2xHA-DsRedAddgeneCat# 80822 RRID: Addgene_80822
Recombinant DNA reagentpCFD3AddgeneCat# 49410 RRID: Addgene_49410
Recombinant DNA reagentpAW-NbVHH05-GFPThis paper AddgeneCat# 171570
Recombinant DNA reagentpAW-Nb127D01-GFPThis paper AddgeneCat# 171571
Recombinant DNA reagentpAW-NbVHH05-mCherryThis paper AddgeneCat# 171572
Recombinant DNA reagentpAW-Nb127D01-mCherryThis paper AddgeneCat# 171573
Recombinant DNA reagentpAW-H2B-mCherry-VHH05This paperN/ASee *Note
Recombinant DNA reagentpAW-mito-mCherry-VHH05This paperN/ASee *Note
Recombinant DNA reagentpAW-CD8-mCherry-VHH05This paperN/ASee *Note
Recombinant DNA reagentpAW-H2B-mCherry-127D01This paperN/ASee *Note
Recombinant DNA reagentpAW-mito-mCherry-127D01This paperN/ASee *Note
Recombinant DNA reagentpAW-CD8-mCherry-127D01This paperN/ASee *Note
Recombinant DNA reagentpAW-VHH05-H2B-mCherryThis paperN/ASee *Note
Recombinant DNA reagentpAW-CD8-VHH05-mCherryThis paperN/ASee *Note
Recombinant DNA reagentpAW-127D01-H2B-mCherryThis paperN/ASee *Note
Recombinant DNA reagentpAW-CD8-127D01-mCherryThis paperN/ASee *Note
Recombinant DNA reagentpAW-BiP-NbVHH05-mCherry-KDELThis paper AddgeneCat# 171574
Recombinant DNA reagentpAW-BiP-Nb127D01-mCherry-KDELThis paper AddgeneCat# 171575
Recombinant DNA reagentpAW-CD8-NbVHH05-GFPThis paper AddgeneCat# 171576
Recombinant DNA reagentpAW-CD8-Nb127D01-GFPThis paper AddgeneCat# 171577
Recombinant DNA reagentpAW-HGP-BiP-FLAG-GFP-VHH05This paperN/ASee *Note
Recombinant DNA reagentpAW-HGP-BiP-FLAG-GFP-2xVHH05This paperN/ASee *Note
Recombinant DNA reagentpAW-HGP-BiP-FLAG-GFP-3xVHH05This paperN/ASee *Note
Recombinant DNA reagentpAW-HGP-BiP-FLAG-GFP-127D01This paperN/ASee *Note
Recombinant DNA reagentpAW-HGP-BiP-FLAG-GFP-2x127D01This paperN/ASee *Note
Recombinant DNA reagentpAW-HGP-BiP-FLAG-GFP-3x127D01This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-127D01-Akh-VHH05This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-127D01-Dilp2-VHH05This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-127D01-Dilp8-VHH05This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-127D01-Pvf1-VHH05This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-127D01-REPTOR-bp-B-VHH05This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-127D01-REPTOR-bp-C-VHH05This paperN/ASee *Note
Recombinant DNA reagentpMT-HGP-v3-Nb127D01-hIgGThis paper AddgeneCat# 171564
Recombinant DNA reagentpMT-HGP-v3-NbVHH05-hIgGThis paper AddgeneCat# 171565
Recombinant DNA reagentpET-26b-Nb127D01-HA-HisThis paper AddgeneCat# 171566
Recombinant DNA reagentpET-26b-NbVHH05-HA-HisThis paper AddgeneCat# 171567
Recombinant DNA reagentpET-26b-Nb127D01-ALFA-HisThis paper AddgeneCat# 171568
Recombinant DNA reagentpET-26b-NbVHH05-ALFA-HisThis paper AddgeneCat# 171569
Recombinant DNA reagentpW10-UAS-NbVHH05-HAThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-NbVHH05-HAThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-Nb127D01-HAThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-Nb127D01-HAThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-NbVHH05-GFPThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-NbVHH05-GFPThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-Nb127D01-GFPThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-Nb127D01-GFPThis paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-127D01-REPTOR-VHH05This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-127D01-Upd2-VHH05This paperN/ASee *Note
Recombinant DNA reagentpW10-UAS-BiP-127D01-Akh-VHH05This paperN/ASee *Note
Recombinant DNA reagentpCFD3-H2Av-sgRNAThis paperN/ASee *Note
Recombinant DNA reagentpScarlessHD-C-3x127D01-H2Av-DsRedThis paperN/ASee *Note
Recombinant DNA reagentpScarlessHD-C-3xVHH05-H2Av-DsRedThis paperN/ASee *Note
Recombinant DNA reagentpScarlessHD-C-3x127D01-DsRedThis paper AddgeneCat# 171578
Recombinant DNA reagentpScarlessHD-C-3xVHH05-DsRedThis paper AddgeneCat# 171580
Recombinant DNA reagentpScarlessHD-N-3x127D01-DsRedThis paper AddgeneCat# 171579
Recombinant DNA reagentpScarlessHD-N-3xVHH05-DsRedThis paper AddgeneCat# 171581
Cell line (Drosophila melanogaster)S2R+DGRCCat# 150 RRID: CVCL_Z831FlyBase Report: FBtc0000150
Cell line (Drosophila melanogaster)ESF921-adapted S2 cellsExpression SystemsCat# 94–005S
Genetic reagent (Drosophila melanogaster)w1118Perrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)y,v; P{nos- phiC31\int.NLS}X; P{CaryP}attP40Perrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)y,w; P{nos- phiC31\int.NLS}X; P{CaryP}attP2Perrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)y,w; nos-Cas9/CyOPerrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)y,w; TM3, Sb/TM6,TbPerrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; Gla/CyOPerrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; If/CyO; MKRS/TM6, TbPerrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)Myo1A-Gal4, tub-Gal80tsPerrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)Lpp-Gal4Perrimon labN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-NbVHH05-HA, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-NbVHH05-HA, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-Nb127D01-HA, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-Nb127D01-HA, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-NbVHH05-GFP, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-NbVHH05-GFP, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-Nb127D01-GFP, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-Nb127D01-GFP, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-NbVHH05-HA, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-NbVHH05-HA, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-Nb127D01-HA, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-Nb127D01-HA, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-NbVHH05-GFP, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-NbVHH05-GFP, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-Nb127D01-GFP, w + attp2This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-Nb127D01-GFP, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-BiP-VHH05-Upd2-127D01, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-VHH05-REPTOR-127D01, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)yw; UAS-VHH05-REPTOR-BP-C127D01, w + attp40This paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)w; H2Av-3xVHH05/TM3, SbThis paperN/ASee *Note
Genetic reagent (Drosophila melanogaster)w; H2Av-3x127D01/TM3, SbThis paperN/ASee *Note
Strain, strain background (Escherichia coli)TOP10 Escherichia coliInvitrogenCat# C404010
Strain, strain background (Escherichia coli)BL21 (DE3) Escherichia coliNew England BiolabsCat# C25271
Sequence-based reagentAll oligosThis paperSee Supplementary file 1
Software, algorithmPhotoshopAdobeRRID:SCR_014199
Software, algorithmImageJNIHRRID:SCR_003070
Software, algorithmExcelMicrosoftRRID:SCR_016137
Software, algorithmGraphPad Prism6GraphPadRRID:SCR_002798
OtherJoystick MicromanipulatorNARISHIGECat# MN-151
OtherFemtoJet MicroinjectorEppendorfCat# LV41365120
OtherGarfunkel Nikon Ti2 Spinning DiskNikonN/A
OtherKimble Kontes pellet pestlesMilliporeCat# Z359947
OtherImmobilon-P polyvinylidene fluoride (PVDF) membraneMilliporeCat# IPVH00010
OtherChemiDoc MP imaging systemBio-RadCat# 17001402
OtherKodak M35 X-OMAT Automatic ProcessorsKODAKCat# RT-KP-M35A
OtherHyperfilm ECLAmershamCat# GE28-9068-35
Other4′,6-Diamidino-2-phenylindole (DAPI)Thermo Fisher ScientificCat# D1306 RRID: AB_2629482(1 µg/ml)
  1. *Note: Further information and requests for resources and reagents used in this paper should be directed to and will be fulfilled by the Lead Contact, Norbert Perrimon (perrimon@genetics.med.harvard.edu.). Transgenic flies used to express these two nanobodies and plasmids used to express and prepare nanobodies, which have been submitted to public reagent resource centers, Bloomington Drosophila Stock Center, Drosophila Genomics Resource Center and Addgene.

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jun Xu
  2. Ah-Ram Kim
  3. Ross W Cheloha
  4. Fabian A Fischer
  5. Joshua Shing Shun Li
  6. Yuan Feng
  7. Emily Stoneburner
  8. Richard Binari
  9. Stephanie E Mohr
  10. Jonathan Zirin
  11. Hidde L Ploegh
  12. Norbert Perrimon
(2022)
Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies
eLife 11:e74326.
https://doi.org/10.7554/eLife.74326