Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high functioning octogenarians
Abstract
Background: Master athletes prove that preserving a high level of physical function up to very late in life is possible, but the mechanisms responsible for their high function remain unclear.
Methods: We performed muscle biopsies in 15 octogenarian world class track and field masters athletes (MA) and 14 non-athlete age/sex-matched controls (NA) to provide insights into mechanisms for preserving function in advanced age. Muscle samples were assessed for respiratory compromised fibers, mtDNA copy number, and proteomics by liquid-chromatography mass spectrometry.
Results: MA exhibited markedly better performance on clinical function tests and greater cross-sectional area of the vastus lateralis muscle. Proteomics analysis revealed marked differences, where most of the ~800 differentially represented proteins in MA versus NA pertained to mitochondria structure/function such as electron transport capacity (ETC), cristae formation, mitochondrial biogenesis, and mtDNA-encoded proteins. In contrast, proteins from the spliceosome complex and nuclear pore were downregulated in MA. Consistent with proteomics data, MA had fewer respiratory compromised fibers, higher mtDNA copy number, and an increased protein ratio of the cristae-bound ETC subunits relative to the outer mitochondrial membrane protein voltage dependent anion channel. There was a substantial overlap of proteins overrepresented in MA versus NA with proteins that decline with aging and which are higher in physically active than sedentary individuals. However, we also found 176 proteins related to mitochondria that are uniquely differentially expressed in MA.
Conclusions: We conclude that high function in advanced age is associated with preserving mitochondrial structure/function proteins, with under-representation of proteins involved in the spliceosome and nuclear pore complex. Whereas many of these differences in MA appear related to their physical activity habits, others may reflect unique biological (e.g., gene, environment) mechanisms that preserve muscle integrity and function with aging.
Funding: Funding for this study was provided by operating grants from the Canadian Institutes of Health Research (MOP 84408 to TT and MOP 125986 to RTH). Supported in part by the Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, United States.
Data availability
The mass spectrometry proteomics data have been deposited to the MassIVE with the dataset identifier MSV000086195 (ftp://MSV000086195@massive.ucsd.edu)
-
Proteomics of Human Skeletal MuscleProteomeXchange, PXD011967.
Article and author information
Author details
Funding
Canadian Institutes of Health Research (MOP 125986)
- Russell T Hepple
Canadian Institutes of Health Research (84408)
- Tanja Taivassalo
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Human subjects research was done with prior approval from the Institutional Review Board of the Faculty of Medicine at McGill University (A08-M66-12B) and according to the Declaration of Helsinki. All subjects provided written informed consent.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 1,932
- views
-
- 345
- downloads
-
- 20
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 20
- citations for umbrella DOI https://doi.org/10.7554/eLife.74335