Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis

  1. Samantha C Schwager
  2. Katherine Young
  3. Lauren A Hapach
  4. Caroline M Carlson
  5. Jenna A Mosier
  6. Tanner J McArdle
  7. Wenjun Wang
  8. Curtis Schunk
  9. Anissa L Jayathilake
  10. Madison E Bates
  11. Francois Bordeleau
  12. Marc A Antonyak
  13. Richard A Cerione
  14. Cynthia A Reinhart-King  Is a corresponding author
  1. Vanderbilt University, United States
  2. Cornell University, United States
  3. Vanderbilt University Medical Center, United States
  4. Hume-Fogg Academic High School, United States
  5. Université Laval, Canada

Abstract

Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.

Data availability

Source data is included in supporting files. All supporting data sheets contain the figures in the file name and the figure panel in the excel tab.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Samantha C Schwager

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Katherine Young

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren A Hapach

    Department of Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline M Carlson

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jenna A Mosier

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tanner J McArdle

    Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wenjun Wang

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0907-6282
  8. Curtis Schunk

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anissa L Jayathilake

    Hume-Fogg Academic High School, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Madison E Bates

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Francois Bordeleau

    Faculty of Medicine, Université Laval, Québecc, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5114-1757
  12. Marc A Antonyak

    Department of Biomedical Science, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Richard A Cerione

    Department of Biomedical Science, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Cynthia A Reinhart-King

    1Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    For correspondence
    Cynthia.Reinhart-King@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6959-3914

Funding

W. M. Keck Foundation

  • Cynthia A Reinhart-King

National Institute of General Medical Sciences (GM13117)

  • Cynthia A Reinhart-King

National Science Foundation (1937963)

  • Samantha C Schwager
  • Jenna A Mosier

National Science Foundation (DGE-1650441)

  • Lauren A Hapach

Cancer Research Society

  • Francois Bordeleau

National Cancer Institute (K99CA212270)

  • Francois Bordeleau

National Cancer Institute (5P30 CA68485-19)

  • Cynthia A Reinhart-King

National Institute of Diabetes and Digestive and Kidney Diseases (U24 DK059637-16)

  • Cynthia A Reinhart-King

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were performed in accordance with AAALAC guidelines and were approved by the Vanderbilt University Institutional Animal Care and Use Committee (Protocol No. M1700029-00).

Copyright

© 2022, Schwager et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,248
    views
  • 182
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha C Schwager
  2. Katherine Young
  3. Lauren A Hapach
  4. Caroline M Carlson
  5. Jenna A Mosier
  6. Tanner J McArdle
  7. Wenjun Wang
  8. Curtis Schunk
  9. Anissa L Jayathilake
  10. Madison E Bates
  11. Francois Bordeleau
  12. Marc A Antonyak
  13. Richard A Cerione
  14. Cynthia A Reinhart-King
(2022)
Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis
eLife 11:e74433.
https://doi.org/10.7554/eLife.74433

Share this article

https://doi.org/10.7554/eLife.74433

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.