Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis

  1. Samantha C Schwager
  2. Katherine Young
  3. Lauren A Hapach
  4. Caroline M Carlson
  5. Jenna A Mosier
  6. Tanner J McArdle
  7. Wenjun Wang
  8. Curtis Schunk
  9. Anissa L Jayathilake
  10. Madison E Bates
  11. Francois Bordeleau
  12. Marc A Antonyak
  13. Richard A Cerione
  14. Cynthia A Reinhart-King  Is a corresponding author
  1. Vanderbilt University, United States
  2. Cornell University, United States
  3. Vanderbilt University Medical Center, United States
  4. Hume-Fogg Academic High School, United States
  5. Université Laval, Canada

Abstract

Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.

Data availability

Source data is included in supporting files. All supporting data sheets contain the figures in the file name and the figure panel in the excel tab.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Samantha C Schwager

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Katherine Young

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren A Hapach

    Department of Biomedical Engineering, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline M Carlson

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jenna A Mosier

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tanner J McArdle

    Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wenjun Wang

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0907-6282
  8. Curtis Schunk

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anissa L Jayathilake

    Hume-Fogg Academic High School, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Madison E Bates

    Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Francois Bordeleau

    Faculty of Medicine, Université Laval, Québecc, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5114-1757
  12. Marc A Antonyak

    Department of Biomedical Science, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Richard A Cerione

    Department of Biomedical Science, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Cynthia A Reinhart-King

    1Department of Biomedical Engineering, Vanderbilt University, Nashville, United States
    For correspondence
    Cynthia.Reinhart-King@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6959-3914

Funding

W. M. Keck Foundation

  • Cynthia A Reinhart-King

National Institute of General Medical Sciences (GM13117)

  • Cynthia A Reinhart-King

National Science Foundation (1937963)

  • Samantha C Schwager
  • Jenna A Mosier

National Science Foundation (DGE-1650441)

  • Lauren A Hapach

Cancer Research Society

  • Francois Bordeleau

National Cancer Institute (K99CA212270)

  • Francois Bordeleau

National Cancer Institute (5P30 CA68485-19)

  • Cynthia A Reinhart-King

National Institute of Diabetes and Digestive and Kidney Diseases (U24 DK059637-16)

  • Cynthia A Reinhart-King

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were performed in accordance with AAALAC guidelines and were approved by the Vanderbilt University Institutional Animal Care and Use Committee (Protocol No. M1700029-00).

Copyright

© 2022, Schwager et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,162
    views
  • 175
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha C Schwager
  2. Katherine Young
  3. Lauren A Hapach
  4. Caroline M Carlson
  5. Jenna A Mosier
  6. Tanner J McArdle
  7. Wenjun Wang
  8. Curtis Schunk
  9. Anissa L Jayathilake
  10. Madison E Bates
  11. Francois Bordeleau
  12. Marc A Antonyak
  13. Richard A Cerione
  14. Cynthia A Reinhart-King
(2022)
Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis
eLife 11:e74433.
https://doi.org/10.7554/eLife.74433

Share this article

https://doi.org/10.7554/eLife.74433

Further reading

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Gabriella O Estevam, Edmond M Linossi ... James S Fraser
    Research Article

    MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.

    1. Cancer Biology
    Elazar Besser, Anat Gelfand ... David Meiri
    Research Article

    In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.