Diversification dynamics in the Neotropics through time, clades and biogeographic regions

  1. Andrea S Meseguer  Is a corresponding author
  2. Alice Michel
  3. Pierre-Henri Fabre
  4. Oscar A Pérez Escobar
  5. Guillaume Chomicki
  6. Ricarda Riina
  7. Alexandre Antonelli
  8. Pierre-Olivier Antoine
  9. Frédéric Delsuc
  10. Fabien Condamine
  1. Real Jardín Botánico, Spain
  2. University of California, Davis, United States
  3. Université de Montpellier, UMR 5554 CNRS, France
  4. Royal Botanic Gardens, United Kingdom
  5. University of Sheffield, United Kingdom

Abstract

The origins and evolution of the outstanding Neotropical biodiversity are a matter of intense debate. A comprehensive understanding is hindered by the lack of deep-time comparative data across wide phylogenetic and ecological contexts. Here, we quantify the prevailing diversification trajectories and drivers of Neotropical diversification in a sample of 150 phylogenies (12,512 species) of seed plants and tetrapods, and assess their variation across Neotropical regions and taxa. Analyses indicate that Neotropical diversity has mostly expanded through time (70% of the clades), while scenarios of saturated and declining diversity account for 21% and 9% of Neotropical diversity, respectively. Five biogeographic areas are identified as distinctive units of long-term Neotropical evolution, including Pan-Amazonia, the Dry Diagonal, and Bahama-Antilles. Diversification dynamics do not differ across these areas, suggesting no geographic structure in long-term Neotropical diversification. In contrast, diversification dynamics differ across taxa: plant diversity mostly expanded through time (88%), while a substantial fraction (43%) of tetrapod diversity accumulated at a slower pace or declined toward the present. These opposite evolutionary patterns may reflect different capacities for plants and tetrapods to cope with past climate changes.

Data availability

The chronogram dataset and the diversification results are archived in Dryad (72). All other data used or generated in this manuscript are presented in the manuscript, or its supplementary material.

The following data sets were generated

Article and author information

Author details

  1. Andrea S Meseguer

    Real Jardín Botánico, Madrid, Spain
    For correspondence
    asanchezmeseguer@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0743-404X
  2. Alice Michel

    Department of Anthropology, University of California, Davis, California, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre-Henri Fabre

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Oscar A Pérez Escobar

    Royal Botanic Gardens, Kew, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Guillaume Chomicki

    Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Ricarda Riina

    Real Jardín Botánico, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandre Antonelli

    Royal Botanic Gardens, Kew, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Pierre-Olivier Antoine

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Frédéric Delsuc

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6501-6287
  10. Fabien Condamine

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABX-25-01)

  • Pierre-Olivier Antoine
  • Frédéric Delsuc
  • Fabien Condamine

Agence Nationale de la Recherche (ANR-17-CE31-0009)

  • Pierre-Olivier Antoine
  • Frédéric Delsuc
  • Fabien Condamine

Ministerio de Ciencia e Innovación (PID2020-120145GA-I00)

  • Andrea S Meseguer

Comunidad Autonoma de Madrid, Atraccion de Talento (2019-T1/AMB-12648)

  • Andrea S Meseguer

Ministerio de Ciencia e Innovación (PID2019-108109GB-I00)

  • Ricarda Riina

Swedish Research Council (2019-05191)

  • Alexandre Antonelli

Natural Environment Research Council (NE/S014470/1)

  • Guillaume Chomicki

Swiss Orchid Foundation

  • Oscar A Pérez Escobar

Ministerio de Ciencia e Innovación (IJCI-2017-32301)

  • Andrea S Meseguer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Meseguer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,495
    views
  • 593
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea S Meseguer
  2. Alice Michel
  3. Pierre-Henri Fabre
  4. Oscar A Pérez Escobar
  5. Guillaume Chomicki
  6. Ricarda Riina
  7. Alexandre Antonelli
  8. Pierre-Olivier Antoine
  9. Frédéric Delsuc
  10. Fabien Condamine
(2022)
Diversification dynamics in the Neotropics through time, clades and biogeographic regions
eLife 11:e74503.
https://doi.org/10.7554/eLife.74503

Share this article

https://doi.org/10.7554/eLife.74503

Further reading

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.