Diversification dynamics in the Neotropics through time, clades and biogeographic regions

  1. Andrea S Meseguer  Is a corresponding author
  2. Alice Michel
  3. Pierre-Henri Fabre
  4. Oscar A Pérez Escobar
  5. Guillaume Chomicki
  6. Ricarda Riina
  7. Alexandre Antonelli
  8. Pierre-Olivier Antoine
  9. Frédéric Delsuc
  10. Fabien Condamine
  1. Real Jardín Botánico (RJB), CSIC, Spain
  2. University of California, Davis, United States
  3. Université de Montpellier, UMR 5554 CNRS, France
  4. Royal Botanic Gardens, United Kingdom
  5. University of Sheffield, United Kingdom

Abstract

The origins and evolution of the outstanding Neotropical biodiversity are a matter of intense debate. A comprehensive understanding is hindered by the lack of deep-time comparative data across wide phylogenetic and ecological contexts. Here, we quantify the prevailing diversification trajectories and drivers of Neotropical diversification in a sample of 150 phylogenies (12,512 species) of seed plants and tetrapods, and assess their variation across Neotropical regions and taxa. Analyses indicate that Neotropical diversity has mostly expanded through time (70% of the clades), while scenarios of saturated and declining diversity account for 21% and 9% of Neotropical diversity, respectively. Five biogeographic areas are identified as distinctive units of long-term Neotropical evolution, including Pan-Amazonia, the Dry Diagonal, and Bahama-Antilles. Diversification dynamics do not differ across these areas, suggesting no geographic structure in long-term Neotropical diversification. In contrast, diversification dynamics differ across taxa: plant diversity mostly expanded through time (88%), while a substantial fraction (43%) of tetrapod diversity accumulated at a slower pace or declined toward the present. These opposite evolutionary patterns may reflect different capacities for plants and tetrapods to cope with past climate changes.

Data availability

The chronogram dataset and the diversification results are archived in Dryad (72). All other data used or generated in this manuscript are presented in the manuscript, or its supplementary material.

The following data sets were generated

Article and author information

Author details

  1. Andrea S Meseguer

    Real Jardín Botánico (RJB), CSIC, Madrid, Spain
    For correspondence
    asanchezmeseguer@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0743-404X
  2. Alice Michel

    Department of Anthropology, University of California, Davis, California, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre-Henri Fabre

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Oscar A Pérez Escobar

    Royal Botanic Gardens, Kew, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Guillaume Chomicki

    Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Ricarda Riina

    Real Jardín Botánico (RJB), CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexandre Antonelli

    Royal Botanic Gardens, Kew, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Pierre-Olivier Antoine

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Frédéric Delsuc

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6501-6287
  10. Fabien Condamine

    Institut des Sciences de l'Evolution, Université de Montpellier, UMR 5554 CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR-10-LABX-25-01)

  • Pierre-Olivier Antoine
  • Frédéric Delsuc
  • Fabien Condamine

Agence Nationale de la Recherche (ANR-17-CE31-0009)

  • Pierre-Olivier Antoine
  • Frédéric Delsuc
  • Fabien Condamine

Ministerio de Ciencia e Innovación (PID2020-120145GA-I00)

  • Andrea S Meseguer

Comunidad Autonoma de Madrid, Atraccion de Talento (2019-T1/AMB-12648)

  • Andrea S Meseguer

Ministerio de Ciencia e Innovación (PID2019-108109GB-I00)

  • Ricarda Riina

Swedish Research Council (2019-05191)

  • Alexandre Antonelli

Natural Environment Research Council (NE/S014470/1)

  • Guillaume Chomicki

Swiss Orchid Foundation

  • Oscar A Pérez Escobar

Ministerio de Ciencia e Innovación (IJCI-2017-32301)

  • Andrea S Meseguer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David A. Donoso, Escuela Politécnica Nacional, Ecuador

Version history

  1. Preprint posted: February 25, 2021 (view preprint)
  2. Received: October 7, 2021
  3. Accepted: October 26, 2022
  4. Accepted Manuscript published: October 27, 2022 (version 1)
  5. Accepted Manuscript updated: October 28, 2022 (version 2)
  6. Version of Record published: November 16, 2022 (version 3)

Copyright

© 2022, Meseguer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,064
    views
  • 530
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea S Meseguer
  2. Alice Michel
  3. Pierre-Henri Fabre
  4. Oscar A Pérez Escobar
  5. Guillaume Chomicki
  6. Ricarda Riina
  7. Alexandre Antonelli
  8. Pierre-Olivier Antoine
  9. Frédéric Delsuc
  10. Fabien Condamine
(2022)
Diversification dynamics in the Neotropics through time, clades and biogeographic regions
eLife 11:e74503.
https://doi.org/10.7554/eLife.74503

Share this article

https://doi.org/10.7554/eLife.74503

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.