1. Cell Biology
Download icon

Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS-Hook-FHIP complexes

  1. Jenna R Christensen
  2. Agnieszka A Kendrick
  3. Joey B Truong
  4. Adriana Aguilar-Maldonado
  5. Vinit Adani
  6. Monika Dzieciatkowska
  7. Samara L Reck-Peterson  Is a corresponding author
  1. University of California, San Diego, United States
  2. Harvard University, United States
  3. University of Colorado Denver, United States
Research Article
  • Cited 1
  • Views 917
  • Annotations
Cite this article as: eLife 2021;10:e74538 doi: 10.7554/eLife.74538

Abstract

In eukaryotic cells, intracellular components are organized by the microtubule motors cytoplasmic dynein-1 (dynein) and kinesins, which are linked to cargos via adaptor proteins. While ~40 kinesins transport cargo toward the plus end of microtubules, a single dynein moves cargo in the opposite direction. How dynein transports a wide variety of cargos remains an open question. The FTS-Hook-FHIP ('FHF') cargo adaptor complex links dynein to cargo in mammals and fungi. As human cells have three Hooks and four FHIP proteins, we hypothesized that the combinatorial assembly of different Hook and FHIP proteins could underlie dynein cargo diversity. Using proteomic approaches, we determine the protein 'interactome' of each FHIP protein. Live-cell imaging and biochemical approaches show that different FHF complexes associate with distinct motile cargos. These complexes also move with dynein and its cofactor dynactin in single-molecule in vitro reconstitution assays. Complexes composed of FTS, FHIP1B, and Hook1/Hook3 co-localize with Rab5-tagged early endosomes via a direct interaction between FHIP1B and GTP-bound Rab5. In contrast, complexes composed of FTS, FHIP2A and Hook2 colocalize with Rab1A-tagged ER-to-Golgi cargos and FHIP2A is involved in the motility of Rab1A tubules. Our findings suggest that combinatorial assembly of different FTS-Hook-FHIP complexes is one mechanism dynein uses to achieve cargo specificity.

Data availability

Supplementary files 1-3 contain all of the mass spectrometry data.

Article and author information

Author details

  1. Jenna R Christensen

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0323-6169
  2. Agnieszka A Kendrick

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Joey B Truong

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Adriana Aguilar-Maldonado

    Harvard University, Somerville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1695-1719
  5. Vinit Adani

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Monika Dzieciatkowska

    Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, United States
    Competing interests
    No competing interests declared.
  7. Samara L Reck-Peterson

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    For correspondence
    sreckpeterson@ucsd.edu
    Competing interests
    Samara L Reck-Peterson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1553-465X

Funding

Howard Hughes Medical Institute

  • Samara L Reck-Peterson

National Institutes of Health (R01GM121772)

  • Samara L Reck-Peterson

National Institutes of Health (R35GM141825)

  • Samara L Reck-Peterson

National Institutes of Health (K99GM140269)

  • Jenna R Christensen

American Cancer Society (PF-18-190-01-CCG)

  • Agnieszka A Kendrick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Preprint posted: October 8, 2021 (view preprint)
  2. Received: October 8, 2021
  3. Accepted: December 8, 2021
  4. Accepted Manuscript published: December 9, 2021 (version 1)
  5. Version of Record published: January 5, 2022 (version 2)

Copyright

© 2021, Christensen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 917
    Page views
  • 148
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Desiree Schatton et al.
    Research Article

    Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.

    1. Cell Biology
    2. Physics of Living Systems
    Sohyeon Park et al.
    Research Article Updated

    In addition to diffusive signals, cells in tissue also communicate via long, thin cellular protrusions, such as airinemes in zebrafish. Before establishing communication, cellular protrusions must find their target cell. Here, we demonstrate that the shapes of airinemes in zebrafish are consistent with a finite persistent random walk model. The probability of contacting the target cell is maximized for a balance between ballistic search (straight) and diffusive search (highly curved, random). We find that the curvature of airinemes in zebrafish, extracted from live-cell microscopy, is approximately the same value as the optimum in the simple persistent random walk model. We also explore the ability of the target cell to infer direction of the airineme’s source, finding that there is a theoretical trade-off between search optimality and directional information. This provides a framework to characterize the shape, and performance objectives, of non-canonical cellular protrusions in general.