Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS-Hook-FHIP complexes

  1. Jenna R Christensen
  2. Agnieszka A Kendrick
  3. Joey B Truong
  4. Adriana Aguilar-Maldonado
  5. Vinit Adani
  6. Monika Dzieciatkowska
  7. Samara L Reck-Peterson  Is a corresponding author
  1. University of California, San Diego, United States
  2. Harvard University, United States
  3. University of Colorado Denver, United States

Abstract

In eukaryotic cells, intracellular components are organized by the microtubule motors cytoplasmic dynein-1 (dynein) and kinesins, which are linked to cargos via adaptor proteins. While ~40 kinesins transport cargo toward the plus end of microtubules, a single dynein moves cargo in the opposite direction. How dynein transports a wide variety of cargos remains an open question. The FTS-Hook-FHIP ('FHF') cargo adaptor complex links dynein to cargo in mammals and fungi. As human cells have three Hooks and four FHIP proteins, we hypothesized that the combinatorial assembly of different Hook and FHIP proteins could underlie dynein cargo diversity. Using proteomic approaches, we determine the protein 'interactome' of each FHIP protein. Live-cell imaging and biochemical approaches show that different FHF complexes associate with distinct motile cargos. These complexes also move with dynein and its cofactor dynactin in single-molecule in vitro reconstitution assays. Complexes composed of FTS, FHIP1B, and Hook1/Hook3 co-localize with Rab5-tagged early endosomes via a direct interaction between FHIP1B and GTP-bound Rab5. In contrast, complexes composed of FTS, FHIP2A and Hook2 colocalize with Rab1A-tagged ER-to-Golgi cargos and FHIP2A is involved in the motility of Rab1A tubules. Our findings suggest that combinatorial assembly of different FTS-Hook-FHIP complexes is one mechanism dynein uses to achieve cargo specificity.

Data availability

Supplementary files 1-3 contain all of the mass spectrometry data.

Article and author information

Author details

  1. Jenna R Christensen

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0323-6169
  2. Agnieszka A Kendrick

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Joey B Truong

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Adriana Aguilar-Maldonado

    Harvard University, Somerville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1695-1719
  5. Vinit Adani

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Monika Dzieciatkowska

    Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, United States
    Competing interests
    No competing interests declared.
  7. Samara L Reck-Peterson

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    For correspondence
    sreckpeterson@ucsd.edu
    Competing interests
    Samara L Reck-Peterson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1553-465X

Funding

Howard Hughes Medical Institute

  • Samara L Reck-Peterson

National Institutes of Health (R01GM121772)

  • Samara L Reck-Peterson

National Institutes of Health (R35GM141825)

  • Samara L Reck-Peterson

National Institutes of Health (K99GM140269)

  • Jenna R Christensen

American Cancer Society (PF-18-190-01-CCG)

  • Agnieszka A Kendrick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Preprint posted: October 8, 2021 (view preprint)
  2. Received: October 8, 2021
  3. Accepted: December 8, 2021
  4. Accepted Manuscript published: December 9, 2021 (version 1)
  5. Version of Record published: January 5, 2022 (version 2)

Copyright

© 2021, Christensen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,364
    views
  • 315
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenna R Christensen
  2. Agnieszka A Kendrick
  3. Joey B Truong
  4. Adriana Aguilar-Maldonado
  5. Vinit Adani
  6. Monika Dzieciatkowska
  7. Samara L Reck-Peterson
(2021)
Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS-Hook-FHIP complexes
eLife 10:e74538.
https://doi.org/10.7554/eLife.74538

Share this article

https://doi.org/10.7554/eLife.74538

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.