Abstract

Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.

Data availability

Source data files have been provided for Figures 1, 2, 3, 4, 5, 6 and 7.The mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers: PXD029142, PXD029145, PXD029156.

The following data sets were generated

Article and author information

Author details

  1. Desiree Schatton

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Giada Di Pietro

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Karolina Szczepanowska

    Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Matteo Veronese

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie-Charlotte Marx

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristina Braunöhler

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Esther Barth

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan Müller

    Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick Giavalisco

    Center for Molecular Medicine, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4636-1827
  10. Thomas Langer

    Langer Department, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Aleksandra Trifunovic

    Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5472-3517
  12. Elena I Rugarli

    Institute for Genetics, University of Cologne, Cologne, Germany
    For correspondence
    elena.rugarli@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5782-1067

Funding

Deutsche Forschungsgemeinschaft (269925409)

  • Elena I Rugarli

Deutsche Forschungsgemeinschaft (411422114-GRK 2550)

  • Elena I Rugarli

Max Planck Institute for Biology of Ageing (open access funding)

  • Thomas Langer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Erica A Golemis, Fox Chase Cancer Center, United States

Version history

  1. Received: October 8, 2021
  2. Preprint posted: April 26, 2022 (view preprint)
  3. Accepted: May 12, 2022
  4. Accepted Manuscript published: May 13, 2022 (version 1)
  5. Version of Record published: May 26, 2022 (version 2)

Copyright

© 2022, Schatton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,587
    views
  • 280
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Desiree Schatton
  2. Giada Di Pietro
  3. Karolina Szczepanowska
  4. Matteo Veronese
  5. Marie-Charlotte Marx
  6. Kristina Braunöhler
  7. Esther Barth
  8. Stefan Müller
  9. Patrick Giavalisco
  10. Thomas Langer
  11. Aleksandra Trifunovic
  12. Elena I Rugarli
(2022)
CLUH controls astrin-1 expression to couple mitochondrial metabolism to cell cycle progression
eLife 11:e74552.
https://doi.org/10.7554/eLife.74552

Share this article

https://doi.org/10.7554/eLife.74552

Further reading

    1. Cell Biology
    Elizabeth A Beath, Cynthia Bailey ... Francis J McNally
    Research Article

    Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.