KDM6B interacts with TFDP1 to activate P53 signalling in regulating mouse palatogenesis

Abstract

Epigenetic regulation plays extensive roles in diseases and development. Disruption of epigenetic regulation not only increases the risk of cancer, but can also cause various developmental defects. However, the question of how epigenetic changes lead to tissue-specific responses during neural crest fate determination and differentiation remains understudied. Using palatogenesis as a model, we reveal the functional significance of Kdm6b, a H3K27me3 demethylase, in regulating mouse embryonic development. Our study shows that Kdm6b plays an essential role in cranial neural crest development, and loss of Kdm6b disturbs P53 pathway-mediated activity, leading to complete cleft palate along with cell proliferation and differentiation defects in mice. Furthermore, activity of H3K27me3 on the promoter of Trp53 is antagonistically controlled by Kdm6b, and Ezh2 in cranial neural crest cells. More importantly, without Kdm6b, the transcription factor TFDP1, which normally binds to the promoter of Trp53, cannot activate Trp53 expression in palatal mesenchymal cells. Furthermore, the function of Kdm6b in activating Trp53 in these cells cannot be compensated for by the closely related histone demethylase Kdm6a. Collectively, our results highlight the important role of the epigenetic regulator KDM6B and how it specifically interacts with TFDP1 to achieve its functional specificity in regulating Trp53 expression, and further provide mechanistic insights into the epigenetic regulatory network during organogenesis.

Data availability

Sequencing data have been deposited in GEO under accession code GSE175383.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tingwei Guo

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Xia Han

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Jinzhi He

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Jifan Feng

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9944-2604
  5. Junjun Jing

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5745-5207
  6. Eva Janečková

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Jie Lei

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Thach-Vu Ho

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6293-4739
  9. Jian Xu

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    Competing interests
    Jian Xu, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8162-889X
  10. Yang Chai

    Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
    For correspondence
    ychai@usc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2477-7247

Funding

National Institutes of Health (R01 DE012711)

  • Yang Chai

National Institutes of Health (R01 DE022503)

  • Yang Chai

National Institutes of Health (U01 DE028729)

  • Yang Chai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse studies were conducted with protocols approved by the Department of Animal Resources and the Institutional Animal Care and Use Committee (IACUC) of the University of Southern California (Protocols 9320 and 20299).

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,997
    views
  • 316
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tingwei Guo
  2. Xia Han
  3. Jinzhi He
  4. Jifan Feng
  5. Junjun Jing
  6. Eva Janečková
  7. Jie Lei
  8. Thach-Vu Ho
  9. Jian Xu
  10. Yang Chai
(2022)
KDM6B interacts with TFDP1 to activate P53 signalling in regulating mouse palatogenesis
eLife 11:e74595.
https://doi.org/10.7554/eLife.74595

Share this article

https://doi.org/10.7554/eLife.74595

Further reading

    1. Developmental Biology
    Yuki Kaneda, Haruhiko Miyata ... Masahito Ikawa
    Research Article

    Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarová ... Marie Macůrková
    Research Article Updated

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.