ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology

  1. Riem Gawish
  2. Philipp Starkl
  3. Lisabeth Pimenov
  4. Anastasiya Hladik
  5. Karin Lakovits
  6. Felicitas Oberndorfer
  7. Shane JF Cronin
  8. Anna Ohradanova-Repic
  9. Gerald Wirnsberger
  10. Benedikt Agerer
  11. Lukas Endler
  12. Tümay Capraz
  13. Jan W Perthold
  14. Domagoj Cikes
  15. Rubina Koglgruber
  16. Astrid Hagelkruys
  17. Nuria Montserrat
  18. Ali Mirazimi
  19. Louis Boon
  20. Hannes Stockinger
  21. Andreas Bergthaler
  22. Chris Oostenbrink
  23. Josef M Penninger
  24. Sylvia Knapp  Is a corresponding author
  1. Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
  2. Department of Pathology, Medical University of Vienna, Austria
  3. Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Austria
  4. Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
  5. Aperion Biologics, Austria
  6. CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
  7. Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Austria
  8. Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Spain
  9. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Spain
  10. Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Sweden
  11. National Veterinary Institute, Sweden
  12. Polpharma Biologics, Netherlands
  13. Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Canada
7 figures, 1 table and 1 additional file

Figures

Serial pulmonary passaging of SARS-CoV-2 through BALB/c mice leads to mouse adaptation and generation of the mouse-virulent virus maVie16.

(A) Experimental strategy for generation of maVie16. BALB/c mice were intranasally inoculated with BavPat1 (passage 0/P0), followed by serial passaging of virus-containing cell-free lung homogenates of infected mice every 3 days. Passaging was repeated 15 times. (B) Lung tissue virus genome copy numbers (determined by real-time PCR) of mice 3 days after infection with virus of different passages as indicated. (C) Body weight (percentage of initial) of mice 3 days after infection. (D) Body temperature before and 3 days after infection. (E) Lung tissue expression fold change (compared to P0 mean; analyzed by real-time PCR) of indicated genes 3 days after infection. (B–E) n = 1–3; (B, C, E) symbols represent individual mice; Kruskal–Wallis test (vs. P0) with Dunn’s multiple comparisons test; (D) mean ± SD; two-way ANOVA with Sidak test (vs. the respective initial body temperature); *p≤0.05; **p≤0.01; ***p≤0.001; numbers above bars show the actual p-value.

Figure 2 with 1 supplement
maVie16 possesses a distinct pattern of mutations and mediates in vivo pathology via angiotensin-converting enzyme-2 (ACE2).

(A) Overview of allele frequencies of mutated amino acids detected in maVie16 by sequencing. Labels on top indicate the associated protein (SGP, Spike glycoprotein; ORF, open reading frame; MGP, membrane glycoprotein). (B) Spike protein mutation dynamics. (C) Modeling and location of Spike mutations. Spike trimer in cyan blue and green, mACE2 in magenta cartoon representation. Glycans in stick representations. (D) Modeling of specific BavPat1 (upper row) and maVie16 (lower row) amino acid regions in green (respective mutated positions are highlighted in yellow and labeled in green) and their interaction with mouse ACE2 (in magenta; positions of interest are labeled in magenta or black).

Figure 2—figure supplement 1
Mouse versus human angiotensin-converting enzyme-2 (ACE2) glycosylation and maVie16 in vitro proliferation.

(A) Surface representation of the binding interface of human (gray cartoon) and mouse (magenta cartoon) ACE2, colored according to the electrostatic potential. Red surface corresponds to a negative potential and blue surface to a positive potential. Note the more distinct pattern of negatively charged areas in the mouse ACE2 protein. A bundle of glycan conformations is shown in sticks for the glycans at N53 (blue), N90 (yellow), N322 (black), and N546 (red) in human ACE2 and at N53 (blue), N536 (green), and N546 (red) in mouse ACE2. (B) SARS-CoV-2 genome copy numbers in Vero and Caco-2 cells at indicated time points after infection with a multiplicity of infection (MOI) 0.5 of BavPat1 or maVie16.

Figure 3 with 1 supplement
Respiratory maVie16 infection causes dose-dependent pathology in BALB/c and C57BL/6 mice.

(A–C, G) BALB/c (B/c) or (D–F, H) C57BL/6 (B/6) mice were intranasally inoculated with different doses of maVie16 as indicated and monitored for (A, D) body weight, (B, E) survival and (C, F) body temperature over 7 days; dashed lines in (A) and (C) indicate trajectories of groups lacking full group size due to death of animals (see B). (G, H) Lung sections (hematoxylin and eosin stain) from mice 3 days after infection with 105 TCID50 maVie16; black rectangles in the upper pictures indicate the area magnified in the respective lower row picture; scale bars indicate 100 µm. (I) Histological score for analysis of lung sections as described in (G) and (H); symbols represent individual mice; (A, C, D, F) mean ± SD; (B) Mantel–Cox test (vs. 4 × 103 TCID50); **p≤0.01; the number next to the symbol shows the actual p-value.

Figure 3—figure supplement 1
Disease kinetics of BavPat1-infected KRT18-hACE2 mice.

(A–F) Mice expressing human ACE2 under control of the human KERATIN-18 promoter (KRT18-hACE2/+) and control animals (+/+) were intranasally inoculated with (A, C, E) 103 or (B, D, F) 104 TCID50 of BavPat1 and monitored over 7 days. (A, B) Survival; (C, D) body weight; (E, F) temperature; (AF) n = 4–7; (E, F) mean ± SD.

Figure 4 with 2 supplements
Mouse COVID-19 (mCOVID-19) is associated with transient lymphopenia, pulmonary dendritic cell, and T cell infiltration and pneumonia.

C57BL/6 mice were intranasally infected with PBS ( = group 0) or 5 × 105 TCID50 maVie16 and sacrificed after 2, 5, 7, or 14 days for subsequent analysis. (A) Flow cytometry analysis of blood cell populations. (B) Density plot representation of blood plasmacytoid dendritic cells (pDCs; identified as live/CD45+/CD11c+/BST2+) analyzed by flow cytometry. (C) Flow cytometry analysis of whole lung cell populations (see Figure 4—figure supplement 1 for gating strategies). (D) Lung tissue expression fold change (compared to group 0 mean; analyzed by real-time PCR) of indicated genes from mice at the respective time points after infection. (A, C, D): symbols represent individual mice; Kruskal–Wallis test (vs. group 0) with Dunn’s multiple comparisons test; *p≤0.05; **p≤0.01; ***p≤0.001.

Figure 4—figure supplement 1
Flow cytometry gating strategy for lung cells.

C57BL/6 mice were intranasally infected with PBS ( = group 0) or 5 × 105 TCID50 maVie16 and sacrificed after 2, 5, 7, or 14 days for subsequent analysis. (A) Example of the flow cytometry gating strategy for immune cell populations (shown in Figure 4C and Figure 4—figure supplement 2B). The sample is derived from an infected mouse 2 days post infection.

Figure 4—figure supplement 2
Cellular, transcriptional, and spleen weight kinetics of maVie16-infected C57BL/6 mice.

C57BL/6 mice were intranasally infected with PBS ( = group 0) or 5 × 105 TCID50 maVie16 and sacrificed after 2, 5, 7, or 14 days for subsequent analysis. (A) Flow cytometry analysis of blood cell populations. (B) Flow cytometry analysis of whole lung cell populations (see Figure 4—figure supplement 1 for gating strategies). (C) Lung tissue expression fold change (compared to group 0 mean; analyzed by real-time PCR) of indicated genes from mice at the respective time points after infection. (D) Spleen weight at indicated time points after infection. (A–D) symbols represent individual mice; Kruskal–Wallis test (vs. group 0) with Dunn’s multiple comparisons test; *p≤0.05; **p≤0.01; ***p≤0.001.

Mouse COVID-19 (mCOVID-19) is associated with transient pneumonia and antigen-specific adaptive immunity.

C57BL/6 mice were intranasally infected with PBS ( = group 0 or PBS) or 5 × 105 TCID50 maVie16 and sacrificed after 2, 5, 7, or 14 days for subsequent analysis. (A) Lung tissue virus genome copy numbers (determined by real-time PCR). (B) Lung tissue weight. (C) Representative lung immunohistochemistry (anti-SARS-CoV-2 nucleocapsid stain, counterstained with hematoxylin) pictures; black rectangles in the upper pictures indicate the area magnified in the respective lower row picture; scale bars represent 100 µm. (D) Lung pathology score based on histological analysis of lung tissue sections. (E) Analysis (by ELISA) of SARS-CoV-2 Spike-specific IgG1, IgG2b, and IgA plasma antibody titers 14 days after infection. (A, B, D, E) Mean + SD; symbols represent individual mice; (A, B, D): Kruskal–Wallis test (vs. [A] day 2 or [B, D] group 0) with Dunn’s multiple comparisons test; (E) Mann–Whitney test; *p≤0.05; **p≤0.01; ***p≤0.001.

Figure 6 with 2 supplements
BALB/c mouse COVID-19 (mCOVID-19) is associated with an increased NK cell and interferon response and is ameliorated by IFNγ and TNF blockade.

BALB/c (B/c) and C57BL/6 (B/6) mice were intranasally inoculated with 105 TCID50 maVie16 (+) or PBS (-). Samples for analyses were collected 3 days after infection. (A) Flow cytometry analysis of blood cell populations. (B) Flow cytometry analysis of whole lung NK cells and plasmacytoid dendritic cells (pDCs). Density plots represent examples of respective cell populations (NK cells pre-gated from live/CD45+/Ly6G-/CD3-; pDCs pre-gated from live/CD45+) (C) Lung tissue expression fold change (compared to the respective mean of uninfected samples; analyzed by real-time PCR) of indicated genes. (D) Experimental scheme for (E–G). BALB/c mice were infected with 105 TCID50 maVie16 and treated intraperitoneally on days 1 and 3 post infection (p.i.) with a mix of 500 µg anti-IFNγ and anti-TNF or with isotype control antibody. (E) Body weight and (F) temperature kinetics over 5 days after infection. (G) Lung weight on day 5 after infection. (A–C, G) Mean + SD; symbols represent individual mice; differences between infected groups were assessed using the Mann–Whitney test; (E, F) mean ± SD; two-way ANOVA with Dunnett’s multiple comparisons test (vs. the respective initial body weight or temperature); in panels without respective labels, the groups were not significantly different (p<0.05); *p≤0.05; **p≤0.01.

Figure 6—figure supplement 1
Comparison of cellular, transcriptional, and organ weight of maVie16-infected BALB/c versus C57BL/6 mice.

BALB/c (B/c) and C57BL/6 (B/6) mice were intranasally inoculated with 105 TCID50 maVie16 (+) or PBS (-). Samples for analyses were collected 3 days after infection. (A) Flow cytometry analysis of blood cell populations. (B) Flow cytometry analysis of indicated lung cell populations in whole tissue. (C) Lung tissue expression fold change (compared to the respective mean of uninfected samples; analyzed by real-time PCR) of indicated genes. (D) Plasma levels of indicated cytokines (assessed by multiplex cytokine analysis). (E) Lung tissue virus genome copy numbers (determined by real-time PCR). (F) Weight of spleen and lung. (A–F) Mean + SD; symbols represent individual mice; differences between infected groups were assessed using the Mann–Whitney test; in panels without respective labels, the groups were not significantly different (p<0.05); *p≤0.05.

Figure 6—figure supplement 2
Disease parameters of maVie16-infected Ace2-deficient mice, and of infected BALB/c and C57BL/6 mice treated with anti-IFNγ and -TNF blocking antibodies.

(A) Experimental scheme for (B) and (C). BALB/c mice were infected with 105 TCID50 maVie16 and treated intraperitoneally on days 1 and 3 post infection (p.i.) with a mix of 500 µg anti-IFNγ and anti-TNF or with isotype control antibody. (B) Lung viral load and (C) blood cell numbers 5 days p.i.; (D) experimental scheme for (EI). C57BL/6 mice were infected with 5 × 105 TCID50 maVie16 and treated intraperitoneally on days 1 and 3 p.i. with a mix of 500 µg anti-IFNγ and anti-TNF or with isotype control antibody. (E) Body weight and (F) temperature kinetics over 5 days after infection. (G) Lung weight, (H) lung viral load, and (I) blood cell numbers 5 days p.i.; (B, C, G–I) mean + SD; Mann–Whitney test; (E, F) mean ± SD; two-way ANOVA with Dunnett’s multiple comparisons test (vs. the respective initial body weight or temperature); *p≤0.05; ns, not significant (p>0.05).

Figure 7 with 1 supplement
Mouse COVID-19 (mCOVID-19) pathology depends on Ace2 and is improved by recombinant angiotensin-converting enzyme-2 (ACE2) administration.

(A) Experimental scheme for (B–E): male Ace2-deficient (Ace2-/y) or control (Ace2+/y) mice were infected with 5 × 105 TCID50 maVie16. (B) Body weight and (C) temperature kinetics over 3 days after infection. (D) Lung tissue weight 3 days post infection (p.i.). (E) Lung histology 3 days after infection (left panels: hematoxylin and eosin stain; right panels: anti-SARS-CoV-2 nucleocapsid immune-stain); black rectangles in the upper pictures indicate the area magnified in the respective lower row picture; scale bars represent 100 µm. (F) Experimental scheme for (GL). BALB/c mice were infected with 105 TCID50 maVie16 and treated daily intranasally up to day 4 p.i. with 100 µg recombinant murine soluble (rms) ACE2 or vehicle (the first treatment was administered together with virus). (G) Body weight and (H) temperature kinetics over 5 days after infection. (I) Lung weight, (J) lung histology (hematoxylin and eosin stain), (K) lung viral load, and (L) blood cells on day 5 after infection. (M) Experimental scheme for (N) and (O). BALB/c mice were infected with 105 TCID50 maVie16 and treated daily, intranasally up to day 5 p.i. with 100 µg rms ACE2 or vehicle. The first treatment was administered either 12 hr, 24 hr, or 48 hr p.i. (N) Body weight and (O) survival over 7 days of infection. (B, C, G, H, N, O) mean ± SD; two-way ANOVA with Dunnett’s multiple comparisons test (vs. the respective initial body weight or temperature); (D, I, K, L) Mann–Whitney test; * p≤0.05; **p≤0.01; ***p≤0.001; ns, not significant (p>0.05).

Figure 7—figure supplement 1
Disease parameters of maVie16-infected Ace2-deficient mice, and of infected BALB/c and C57BL/6 mice treated with recombinant mouse angiotensin-converting enzyme-2 (ACE2).

(A) Experimental scheme for (B): male Ace2-deficient (Ace2-/y) or control (Ace2+/y) mice were infected with 5 × 105 TCID50 maVie16. (B) Lung viral load 3 days post infection (p.i.). (C) Experimental scheme for (D). BALB/c mice were infected with 105 TCID50 maVie16 and treated daily intranasally up to day 4 p.i. with 100 µg recombinant murine soluble (rms) ACE2 or vehicle (the first treatment was administered together with virus). (D) Lung histology (anti-SARS-CoV-2 nucleocapsid immune stain) on day 5 after infection; black rectangles in the upper pictures indicate the area magnified in the respective lower row picture; arrowheads indicate infected (nucleocapsid-positive) cells; scale bars represent 100 µm. (E) Experimental scheme for (F–J). C57BL/6 mice were infected with 5 × 105 TCID50 maVie16 and treated daily intranasally up to day 4 p.i. with 100 µg rms ACE2 or vehicle (the first treatment was administered together with virus). (F) Body weight and (G) temperature kinetics over 5 days after infection. (H) Lung weight, (I) lung viral load, and (J) blood cells on day 5 after infection; (K) Experimental scheme for LBALB/c mice were infected with 105 TCID50 maVie16 and treated daily, intranasally up to day 5 p.i. with 100 µg recombinant murine soluble (rms) ACE2 or vehicle. The first treatment was administered either 12h, 24h or 48h p.i. (L) Body temperature over 7 days of infection. (B, H–J) mean + SD; Mann–Whitney test; (F, G, L) mean ± SD; two-way ANOVA with Dunnett’s multiple comparisons test (vs. the respective initial body weight or temperature); **p≤0.01; ***p≤0.001; ns, not significant (p>0.05).

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus, male)BALB/cJOwn colony, Jackson LabsJAX #000651
Strain, strain background (M. musculus, male)C57BL/6JOwn colony, Jackson LabsJAX #000664
Strain, strain background (M. musculus, male)KRT18-hACE2Own colony, Jackson LabsJAX #034860
Strain, strain background (M. musculus, male)Ace2-/yOwn colony, Jackson Labs
Crackower et al., 2002
Strain, strain background (SARS-CoV-2)BavPat1/2020Charité, Berlin, GermanyEuropean Virology Archive# 026V-03883
Strain, strain background (SARS-CoV-2)maVie16This studyThis study
Cell line (Chlorocebus)VeroATCCCCL-81
Cell line (Chlorocebus)Vero TMPRSS2 (OE)This studyThis study
Cell line (human)Caco-2ATCCHTB37
AntibodyFixable Viability Dye eFluor 780Thermo Fisher, eBioscienceCat# 65-0865-14FC (1:3000)
Antibodyanti-mouse CD16/32 (monoclonal rat)BioLegendCat# 101320; RRID:AB_1574975FC (1:50)
AntibodyBV510 anti-mouse CD45 (monoclonal rat)BioLegendCat# 103138; RRID:AB_2563061FC (1:200)
AntibodyPE anti-mouse CD45 (monoclonal rat)BioLegendCat# 103106; RRID:AB_312971FC (1:200)
AntibodyPE/dazzle 594 anti-mouse CD45.2 (monoclonal mouse)BioLegendCat# 109845; RRID:AB_2564176FC (1:200)
AntibodyPE anti-mouse CD45R (monoclonal rat)BioLegendCat# 103208; RRID:AB_312993FC (1:200)
AntibodyPE anti-mouse F4/80 (monoclonal rat)BioLegendCat# 123110; RRID:AB_893486FC (1:200)
AntibodyAlexa Fluor 700 anti-mouse CD11b (monoclonal rat)BioLegendCat# 101222; RRID:AB_493705FC (1:200)
AntibodyPE/Cyanine7 anti-mouse CD11b (monoclonal rat)BioLegendCat# 101215; RRID:AB_312798FC (1:200)
AntibodyBrilliant Violet 605 anti-mouse CD11b (monoclonal rat)BioLegendCat# 101237; RRID:AB_11126744FC (1:200)
AntibodyPE anti-mouse CD11b (monoclonal rat)BioLegendCat# 101208; RRID:AB_312791FC (1:200)
AntibodyAPC anti-mouse CD11c (monoclonal Armenian hamster)BioLegendCat# 117310; RRID:AB_313779FC (1:200)
AntibodyPE-Texas Red anti-mouse CD11c (monoclonal Armenian hamster)Thermo FisherCat# MCD11C17;RRID:AB_10373971FC (1:200)
AntibodyPE anti-mouse CD11c (monoclonal Armenian hamster)BD BiosciencesCat# 557401; RRID:AB_396684FC (1:200)
AntibodyBrilliant Violet 510 anti-mouse Ly-6C (monoclonal rat)BioLegendCat# 128033; RRID:AB_2562351FC (1:200)
AntibodyPE/Cy7 anti-mouse Ly-6G (monoclonal rat)BioLegendCat# 127617; RRID:AB_1877262FC (1:200)
AntibodyFITC anti-mouse Ly-6G (monoclonal rat)BioLegendCat# 127605; RRID:AB_1236488FC (1:200)
AntibodyBV510 anti-mouse Ly-6G (monoclonal rat)BioLegendCat# 127633; RRID:AB_2562937FC (1:200)
AntibodyPE anti-mouse Ly6G (monoclonal rat)BioLegendCat# 127608; RRID:AB_1186099FC (1:200)
AntibodyPerCP-Cy5.5 Siglec-F (monoclonal rat)BD BiosciencesCat# 565526; RRID:AB_2739281FC (1:100)
AntibodyeFluor 450 anti-mouse MHC Class II (I-A/I-E) (monoclonal rat)Thermo FisherCat# 48-5321-82; RRID:AB_1272204FC (1:200)
AntibodyBV605 anti-mouse CD115 (monoclonal rat)BioLegendCat# 135517; RRID:AB_2562760FC (1:100)
AntibodyFITC anti-mouse CD19 (monoclonal rat)BioLegendCat# 115506; RRID:AB_313641FC (1:200)
AntibodyBV605 anti-mouse CD19 (monoclonal rat)BioLegendCat# 115540; RRID:AB_2563067FC (1:200)
AntibodyPE anti-mouse CD19 (monoclonal rat)BioLegendCat# 115507; RRID:AB_313642FC (1:200)
AntibodyFITC anti-mouse CD3 (monoclonal rat)BioLegendCat# 100204; RRID:AB_312661FC (1:200)
AntibodyPE/Dazzle 594 anti-mouse CD3 (monoclonal rat)BioLegendCat# 100245; RRID:AB_2565882FC (1:200)
AntibodyPerCP/Cy5.5 anti-mouse CD3 (monoclonal rat)BioLegendCat# 100217; RRID:AB_1595597FC (1:200)
AntibodyeFluor450 anti-mouse CD3 (monoclonal rat)BioLegendCat# 100213; RRID:AB_493644FC (1:200)
AntibodyPE anti-mouse CD3 (monoclonal rat)BioLegendCat# 100205; RRID:AB_312662FC (1:200)
AntibodyFITC anti-mouse CD4 (monoclonal rat)BioLegendCat# 100406; RRID:AB_312691FC (1:100)
AntibodyAF700 anti-mouse CD4 (monoclonal rat)BioLegendCat# 100429; RRID:AB_493698FC (1:100)
AntibodyPerCP/Cy5.5 anti-mouse CD4 (monoclonal rat)BioLegendCat# 100433; RRID:AB_893330FC (1:100)
AntibodyPE anti-mouse CD4 (monoclonal rat)BioLegendCat# 100407; RRID:AB_312692FC (1:100)
AntibodyAF700 anti-mouse CD8a (monoclonal rat)BioLegendCat# 100729; RRID:AB_493702FC (1:200)
AntibodyPacific Blue anti-mouse CD8a (monoclonal rat)BioLegendCat# 100728; RRID:AB_493426FC (1:200)
AntibodyPE anti-mouse CD8a (monoclonal rat)BioLegendCat# 100707; RRID:AB_312746FC (1:200)
AntibodyPE anti-mouse TCRβ chain (monoclonal Armenian hamster)BioLegendCat# 109207; RRID:AB_313430FC (1:200)
AntibodyPE anti-mouse TCRγδ (monoclonal Armenian hamster)BioLegendCat# 118107; RRID:AB_313831FC (1:200)
AntibodyPerCP/Cy5.5 anti-mouse NK-1.1 (monoclonal mouse)BioLegendCat# 108727; RRID:AB_2132706FC (1:100)
AntibodyAPC anti-mouse NK-1.1 (monoclonal mouse)BioLegendCat# 108709; RRID:AB_313396FC (1:100)
AntibodyPE anti-mouse FcεRIα (monoclonal Armenian hamster)BioLegendCat# 134307; RRID:AB_1626104FC (1:100)
AntibodyPE/Cy7 anti-mouse CD117 (c-kit) (monoclonal rat)BioLegendCat# 105813; RRID:AB_313222FC (1:100)
AntibodyBV421 anti-mouse CD193 (CCR3) (monoclonal rat)BioLegendCat# 144517; RRID:AB_2565743FC (1:100)
AntibodyAlexa Fluor 647 anti-mouse CD49b (monoclonal rat)BioLegendCat# 108912; RRID:AB_492880FC (1:100)
AntibodyAF700 anti-mouse CD49b (monoclonal rat)Thermo FisherCat# 56-5971-80; RRID:AB_2574506FC (1:100)
AntibodyPE/Dazzle 594 anti-mouse CD64 (FCγRI) (monoclonal mouse)BioLegendCat# 139319; RRID:AB_2566558FC (1:200)
AntibodyAF700 anti-mouse CD43 (monoclonal rat)BioLegendCat# 143213; RRID:AB_2800660FC (1:200)
AntibodyAPC anti-mouse CD44 (monoclonal rat)BioLegendCat# 103012; RRID:AB_312963FC (1:200)
AntibodyBV510 anti-mouse CD138 (monoclonal rat)BD BiosciencesCat# 563192; RRID:AB_2738059FC (1:100)
AntibodyPerCP/Cy5.5 anti-mouse CD21/CD35 (CR2/CR1) (monoclonal rat)BioLegendCat# 123416; RRID:AB_1595490FC (1:100)
AntibodyAF647 anti-mouse CD23 (monoclonal rat)BD BiosciencesCat# 562826; RRID:AB_2737821FC (1:200)
AntibodyPE-Cy7anti-mouse CD93 (AA4.1) (monoclonal rat)Thermo FisherCat# 25-5892-82; RRID:AB_469659FC (1:200)
AntibodyeFluor450 anti-mouse CD90.2 (Thy1.2) (monoclonal rat)BioLegendCat# 140305; RRID:AB_10645335FC (1:200)
AntibodyFITC anti-mouse MERTK (monoclonal rat)BioLegendCat# 151504; RRID:AB_2617035FC (1:100)
AntibodyPE anti-mouse MERTK (monoclonal rat)BioLegendCat# 151505; RRID:AB_2617036FC (1:100)
AntibodyBV605 anti-mouse CD127 (IL-7α) (monoclonal rat)BioLegendCat# 135025; RRID:AB_2562114FC (1:100)
AntibodyeFluor450 anti-mouse IgM (monoclonal rat)Thermo FisherCat# 48-5890-82;RRID:AB_10671539FC (1:200)
AntibodyFITC anti-mouse IgD (monoclonal rat)BioLegendCat# 405704; RRID:AB_315026FC (1:200)
AntibodyPE anti-mouse IgA (monoclonal rat)Thermo FisherCat# 12-4204-83; RRID:AB_465918FC (1:200)
AntibodyBV605 anti-mouse CD62L (monoclonal rat)BioLegendCat# 104438; RRID:AB_2563058FC (1:200)
AntibodyAPC/Cy7 anti-mouse TER-119 (monoclonal rat)BioLegendCat# 116223; RRID:AB_2137788FC (1:200)
AntibodyBiotin anti-mouse IgG1 (monoclonal rat)BD PharmingenCat# 553441ELISA (1:1000)
AntibodyBiotin anti-mouse IgG2b (monoclonal rat)BD PharmingenCat# 553393ELISA (1:1000)
AntibodyBiotin anti-mouse IgA (polyclonal goat)Southern BiotechCat# 1040-08ELISA (1:1000)
AntibodyAnti-SARS nucleocapsid (polyclonal rabbit)Novus BiologicalsCat# NB100-56576IHC (1:1000)
AntibodyBiotin anti-rabbit IgG (polyclonal goat)Vector LabsCat# BA-1000IHC (1:200)
AntibodyAnti-mouse TNF (neutralizing) (monoclonal rat)In houseClone XT222 × 500 µg/200 µl/mouse i.p.
AntibodyAnti-mouse IFNg (neutralizing) (monoclonal rat)In houseClone XMG 1.22 × 500 µg/200 µl/mouse i.p.
AntibodyAnti-ß-galactosidase (IgG1 isotype control) (monoclonal rat)In houseClone GL1132 × 500 µg/200 µl/mouse i.p.
Recombinant DNA reagentpIRES2-AcGFP1 (Plasmid)ClontechCat# 632435
Recombinant DNA reagentpIRES2-SC2quantThis study Plasmid containing a PCR-amplified sequence of BavPat1; used as standard for quantification of virus genome copy numbers
Recombinant DNA reagentpBluescript KS(-)StratageneCat# 212208
Recombinant DNA reagentpBMN-I-GFPAddgenePlasmid 1736
Recombinant DNA reagentpBMN-TMPRSS2-I-GFPThis studyPlasmid containing the PCR-amplified coding sequence of human TMPRSS2; used to transfect Vero cells to enhance in vitro virus propagation
Sequence-based reagent CoV-F3_XhoIThis studyPCR primers, MicrosynthCTCGAGTTTCCTGGTGATTCTTCTTCAGGT
Sequence-based reagent CoV-R3_BamHIThis studyPCR primers, MicrosynthCCTAGGTCTGAGAGAGGGTCAAGTGC
Sequence-based reagentCoV-F3Gu et al., 2020PCR primers, MicrosynthTCCTGGTGATTCTTCTTCAGGT
Sequence-based reagentCoV-R3Gu et al., 2020PCR primers, MicrosynthTCTGAGAGAGGGTCAAGTGC
Sequence-based reagent CoV-P3Gu et al., 2020PCR primers, MicrosynthAGCTGCAGCACCAGCTGTCCA (FAM/TAMRA-labeled)
Sequence-based reagentMouse Adar1_fwdThis studyPCR primers, MicrosynthGATGACCAGTCTGGAGGTGC
Sequence-based reagentMouse Adar1_revThis studyPCR primers, MicrosynthGCAGCAAAGCCATGAGATCG
Sequence-based reagentMouse Eif2ak2_fwdThis studyPCR primers, MicrosynthAAGTACAAGCGCTGGCAGAA
Sequence-based reagentMouse Eif2ak2_revThis studyPCR primers, MicrosynthGCACCGGGTTTTGTATCGAC
Sequence-based reagentMouse Ifng_fwdThis studyPCR primers, MicrosynthACTGGCAAAAGGATGGTGACA
Sequence-based reagentMouse Ifng_revThis studyPCR primers, MicrosynthTGGACCTGTGGGTTGTTGAC
Sequence-based reagentMouse Ifit1_fwdThis studyPCR primers, MicrosynthCAGCAACCATGGGAGAGAATGCTGA
Sequence-based reagentMouse Ifit1_revThis studyPCR primers, MicrosynthGGCACAGTTGCCCCAGGTCG
Sequence-based reagentMouse Il1b_fwdThis studyPCR primers, MicrosynthCAAAATACCTGTGGCCTTGG
Sequence-based reagentMouse Il1b_revThis studyPCR primers, MicrosynthTACCAGTTGGGGAACTCTGC
Sequence-based reagentMouse Il6_fwdThis studyPCR primers, MicrosynthCCACGGCCTTCCCTACTTCA
Sequence-based reagentMouse Il6_revThis studyPCR primers, MicrosynthTGCAAGTGCATCGTTGTTC
Sequence-based reagentMouse Il10_fwdThis studyPCR primers, MicrosynthTGAGGCGCTGTCATCGATTT
Sequence-based reagentMouse Il10_revThis studyPCR primers, MicrosynthCATGGCCTTGTAGACACCTT
Sequence-based reagentMouse Tgfb_fwdThis studyPCR primers, MicrosynthAGCCCGAAGCGGACTAT
Sequence-based reagentMouse Tgfb_revThis studyPCR primers, MicrosynthTCCACATGTTGCTCCACACT
Sequence-based reagentMouse Tnf_fwdThis studyPCR primers, MicrosynthGCGTGGAGCTGAGAGATAACC
Sequence-based reagentMouse Tnf_revThis studyPCR primers, MicrosynthGATCCCAAAGTAGACCTGCCC
Sequence-based reagentHuman TMPRSS2_fwdThis studyPCR primersAACCTGGGCGCCTGGGA
Sequence-based reagentHuman TMPRSS2_revThis studyPCR primersACGTCAAGGACGAAGACCATGTG
Peptide, recombinant proteinCollagenase IGibco/Thermo Fisher Scientific17018029
Peptide, recombinant proteinDNAse ISigmaDN25
Peptide, recombinant proteinRecombinant SARS-CoV-2 Spike protein ectodomainReingard Grabherr, BOKU Vienna
Klausberger et al., 2021
Peptide, recombinant proteinmrsACE2In house (APEIRON Biologics)
Monteil et al., 2020
Commercial assay or kitROTI Prep RNA MiniCarl RothCat# 8485.1
Commercial assay or kitQIAamp Viral RNA Mini KitQIAGENCat# 52904
Commercial assay or kitE.Z.N.A Viral RNA kitOmega Bio-tekCat# R6874
Commercial assay or kitqScript cDNA Synthesis KitQuantabioCat# 95047-500
Commercial assay or kitPerfeCTa SYBR Green SuperMixQuantabioCat# 95055
Commercial assay or kitVectastainABC kitVector LabsCat# PK-6100
Commercial assay or kitDAB Substrate kitVector LabsCat# SK-4100
Commercial assay or kitLEGENDplex Macrophage/Microglia PanelBioLegendCat# 740846
Commercial assay or kitLEGENDplex MU Th Cytokine Panel V02BioLegendCat# 740741
Chemical compound, drugSodium pyruvate (100 mM)Thermo Fisher ScientificCat# 11360070
Chemical compound, drugPenicillin streptomycin (10,000 U/ml)Thermo Fisher ScientificCat# 15140122
Chemical compound, drugMEM nonessential amino acids (100×)Thermo Fisher ScientificCat# 11140050
Chemical compound, drugRLT PlusQIAGENCat# 1053393
Chemical compound, drug2-MercaptoethanolSigma-AldrichCat# M3148
Chemical compound, drugAntigen Unmasking SolutionVector LabsCat# H3300-250
Chemical compound, drugHematoxylin solution (Mayer’s)Sigma-AldrichCat# MHS16
Software, algorithmGraphPad Prism 9.1GraphPad Software, Inc.https://www.graphpad.com
Software, algorithmFlowJoBecton, Dickinson and Companyhttps://www.flowjo.com/
OtherDulbecco’s Modified Eagle’s MediumThermo Fisher ScientificCat# 10564011High glucose, GlutaMAX, HEPES
OtherFetal bovine serumSigmaCat# F9665
OtherGoat serumNovus BiologicalsCat# NBP2-23475

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Riem Gawish
  2. Philipp Starkl
  3. Lisabeth Pimenov
  4. Anastasiya Hladik
  5. Karin Lakovits
  6. Felicitas Oberndorfer
  7. Shane JF Cronin
  8. Anna Ohradanova-Repic
  9. Gerald Wirnsberger
  10. Benedikt Agerer
  11. Lukas Endler
  12. Tümay Capraz
  13. Jan W Perthold
  14. Domagoj Cikes
  15. Rubina Koglgruber
  16. Astrid Hagelkruys
  17. Nuria Montserrat
  18. Ali Mirazimi
  19. Louis Boon
  20. Hannes Stockinger
  21. Andreas Bergthaler
  22. Chris Oostenbrink
  23. Josef M Penninger
  24. Sylvia Knapp
(2022)
ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology
eLife 11:e74623.
https://doi.org/10.7554/eLife.74623