ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology

  1. Riem Gawish
  2. Philipp Starkl
  3. Lisabeth Pimenov
  4. Anastasiya Hladik
  5. Karin Lakovits
  6. Felicitas Oberndorfer
  7. Shane JF Cronin
  8. Anna Ohradanova-Repic
  9. Gerald Wirnsberger
  10. Benedikt Agerer
  11. Lukas Endler
  12. Tümay Capraz
  13. Jan W Perthold
  14. Domagoj Cikes
  15. Rubina Koglgruber
  16. Astrid Hagelkruys
  17. Nuria Montserrat
  18. Ali Mirazimi
  19. Louis Boon
  20. Hannes Stockinger
  21. Andreas Bergthaler
  22. Chris Oostenbrink
  23. Josef M Penninger
  24. Sylvia Knapp  Is a corresponding author
  1. Medical University of Vienna, Austria
  2. Austrian Academy of Sciences, Austria
  3. Apeiron Biologics AG, Austria
  4. University of Natural Resources and Life Sciences, Austria
  5. Institute for Bioengineering of Catalonia, Spain
  6. Karolinska Institute, Sweden
  7. Polpharma Biologics, Netherlands

Abstract

In silico modelling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. MaVie16 induced profound pathology in BALB/c and C57BL/6 mice and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNg and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo.

Data availability

maVie16 SARS-CoV-2 genome sequence will be published on: https://www.ebi.ac.uk/enaProjectaccession: PRJEB46926

The following data sets were generated

Article and author information

Author details

  1. Riem Gawish

    Department of Medicine I, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4267-2131
  2. Philipp Starkl

    Department of Medicine I, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Lisabeth Pimenov

    Department of Medicine I, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  4. Anastasiya Hladik

    Department of Medicine I, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Karin Lakovits

    Department of Medicine I, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  6. Felicitas Oberndorfer

    Department of Pathology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
  7. Shane JF Cronin

    Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Anna Ohradanova-Repic

    Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8005-8522
  9. Gerald Wirnsberger

    Apeiron Biologics AG, Vienna, Austria
    Competing interests
    Gerald Wirnsberger, is an employee of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and is currently testing soluble ACE2 for treatment in COVID-19 patients..
  10. Benedikt Agerer

    CeMM, Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  11. Lukas Endler

    CeMM, Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  12. Tümay Capraz

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  13. Jan W Perthold

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  14. Domagoj Cikes

    Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  15. Rubina Koglgruber

    Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  16. Astrid Hagelkruys

    Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  17. Nuria Montserrat

    Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia, Barcelona, Spain
    Competing interests
    No competing interests declared.
  18. Ali Mirazimi

    Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  19. Louis Boon

    Polpharma Biologics, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  20. Hannes Stockinger

    Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6404-4430
  21. Andreas Bergthaler

    CeMM, Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  22. Chris Oostenbrink

    Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4232-2556
  23. Josef M Penninger

    Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    Josef M Penninger, declares a conflict of interest as a founder and shareholder of Apeiron Biologics. Apeiron holds a patent on the use of ACE2 for the treatment of lung, heart, or kidney injury and is currently testing soluble ACE2 for treatment in COVID-19 patients.(patent #WO2021191436A1)..
  24. Sylvia Knapp

    Department of Medicine I, Medical University of Vienna, Vienna, Austria
    For correspondence
    Sylvia.knapp@meduniwien.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9016-5244

Funding

Austrian Science Fund (F54-10 and F61-04)

  • Sylvia Knapp

Innovative Medicines Initiative (101005026)

  • Josef M Penninger

Austrian Science Fund (ZK57-B28)

  • Riem Gawish

Austrian Science Fund (P31113-B30)

  • Philipp Starkl

Austrian Science Fund (P 34253-B)

  • Anna Ohradanova-Repic

Austrian Science Fund (P 34253-B)

  • Hannes Stockinger

Austrian Science Fund (DK W1212)

  • Benedikt Agerer

Austrian Science Fund (Z 271-B19)

  • Josef M Penninger

Canada Research Chairs (F18-01336)

  • Josef M Penninger

Canadian Institutes of Health Research (F20-02343 and F20-02015)

  • Josef M Penninger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank Kirchhoff, Ulm University Medical Center, Germany

Ethics

Animal experimentation: All experiments involving SARS-CoV-2 or its derivatives were performed in Biosafety Level 3 (BSL-3) facilities at the Medical University of Vienna and performed according to the ethical guidelines and after approval by the institutional review board of the Austrian Ministry of Sciences (BMBWF-2020-0.253.770) and in accordance with the directives of the EU.

Version history

  1. Preprint posted: August 9, 2021 (view preprint)
  2. Received: October 11, 2021
  3. Accepted: December 22, 2021
  4. Accepted Manuscript published: January 13, 2022 (version 1)
  5. Version of Record published: January 20, 2022 (version 2)

Copyright

© 2022, Gawish et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,687
    views
  • 503
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Riem Gawish
  2. Philipp Starkl
  3. Lisabeth Pimenov
  4. Anastasiya Hladik
  5. Karin Lakovits
  6. Felicitas Oberndorfer
  7. Shane JF Cronin
  8. Anna Ohradanova-Repic
  9. Gerald Wirnsberger
  10. Benedikt Agerer
  11. Lukas Endler
  12. Tümay Capraz
  13. Jan W Perthold
  14. Domagoj Cikes
  15. Rubina Koglgruber
  16. Astrid Hagelkruys
  17. Nuria Montserrat
  18. Ali Mirazimi
  19. Louis Boon
  20. Hannes Stockinger
  21. Andreas Bergthaler
  22. Chris Oostenbrink
  23. Josef M Penninger
  24. Sylvia Knapp
(2022)
ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology
eLife 11:e74623.
https://doi.org/10.7554/eLife.74623

Share this article

https://doi.org/10.7554/eLife.74623

Further reading

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

    1. Immunology and Inflammation
    Xiuyuan Lu, Hiroki Hayashi ... Sho Yamasaki
    Research Article

    SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.