Cytotoxic CD4+ T cells driven by T-cell intrinsic IL-18R/MyD88 signaling predominantly infiltrate Trypanosoma cruzi-infected hearts

  1. Carlos-Henrique D Barbosa
  2. Fabio B Canto
  3. Ariel Gomes
  4. Layza M Brandao
  5. Jéssica R Lima
  6. Guilherme A Melo
  7. Alessandra Granato
  8. Eula GA Neves
  9. Walderez O Dutra
  10. Ana-Carolina Oliveira
  11. Alberto Nóbrega
  12. Maria Bellio  Is a corresponding author
  1. Rosalind Franklin University of Medicine and Science, United States
  2. Universidade Federal Fluminense, Brazil
  3. Universidade Federal do Rio de Janeiro (UFRJ), Brazil
  4. Universidade Federal de Minas Gerais, Brazil

Abstract

Increasing attention has been directed to cytotoxic CD4+ T cells (CD4CTLs) in different pathologies, both in humans and mice. The impact of CD4CTLs in immunity and the mechanisms controlling their generation, however, remain poorly understood. Here, we show that CD4CTLs abundantly differentiate during mouse infection with the intracellular parasite Trypanosoma cruzi. CD4CTLs display parallel kinetics to Th1 cells in the spleen, mediate specific cytotoxicity against cells presenting pathogen-derived antigens and express immunoregulatory and/or exhaustion markers. We demonstrate that CD4CTL absolute numbers and activity are severely reduced in both Myd88-/- and Il18ra-/- mice. Of note, the infection of mixed-bone marrow chimeras revealed that WT but not Myd88-/- cells transcribe the CD4CTL gene signature and that Il18ra-/- and Myd88-/- CD4+ T cells phenocopy each other. Moreover, adoptive transfer of WT CD4+GzB+ T cells to infected Il18ra-/- mice extended their survival. Importantly, cells expressing the CD4CTL phenotype predominate among CD4+ T cells infiltrating the infected mouse cardiac tissue and are increased in the blood of Chagas patients, in which the frequency of CD4CTLs correlates with the severity of cardiomyopathy. Our findings describe CD4CTLs as a major player in immunity to a relevant human pathogen and disclose T-cell intrinsic IL-18R/MyD88 signaling as a key pathway controlling the magnitude of the CD4CTL response.

Data availability

Transcriptome data was uploaded to GEO and is already publicly available with the GEO accession no. GSE57738

The following previously published data sets were used

Article and author information

Author details

  1. Carlos-Henrique D Barbosa

    Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7644-7034
  2. Fabio B Canto

    Departamento de Imunobiologia, Universidade Federal Fluminense, Niteroi, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Ariel Gomes

    Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Layza M Brandao

    Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Jéssica R Lima

    Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Guilherme A Melo

    Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Alessandra Granato

    Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Eula GA Neves

    Laboratório de Biologia das Interações Celulares, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Walderez O Dutra

    Laboratório de Biologia das Interações Celulares, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Ana-Carolina Oliveira

    Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0036-3720
  11. Alberto Nóbrega

    Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  12. Maria Bellio

    Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    For correspondence
    mariabellioufrj@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3360-2740

Funding

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (CNE Award E-26/202.603/2019)

  • Maria Bellio

Conselho Nacional de Desenvolvimento Científico e Tecnológico (PQ Award 312143/2018-4)

  • Maria Bellio

Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT -V 465293/2014-0)

  • Maria Bellio

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001)

  • Maria Bellio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were conducted in accordance with guidelines of the Animal Care and Use Committee of the Federal University of Rio de Janeiro (Comitê de Ética do Centro de Ciências da Saúde CEUA - CCS/UFRJ, license: IMPPG022).

Human subjects: All individuals included in this work were volunteers and treatment and clinical care were offered to all patients, as needed, despite their enrollment in this research project. All participants provided written informed consent for participation in the study. This cross-sectional study is part of an extended project evaluating biomarkers of cardiomyopathy development in Chagas disease, which has the approval of the National Committee of Ethics in Research (CONEP#195/2007) and are in accordance with the Declaration for Helsinki.

Copyright

© 2022, Barbosa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,576
    views
  • 296
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carlos-Henrique D Barbosa
  2. Fabio B Canto
  3. Ariel Gomes
  4. Layza M Brandao
  5. Jéssica R Lima
  6. Guilherme A Melo
  7. Alessandra Granato
  8. Eula GA Neves
  9. Walderez O Dutra
  10. Ana-Carolina Oliveira
  11. Alberto Nóbrega
  12. Maria Bellio
(2022)
Cytotoxic CD4+ T cells driven by T-cell intrinsic IL-18R/MyD88 signaling predominantly infiltrate Trypanosoma cruzi-infected hearts
eLife 11:e74636.
https://doi.org/10.7554/eLife.74636

Share this article

https://doi.org/10.7554/eLife.74636

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Benita Martin-Castaño, Patricia Diez-Echave ... Julio Galvez
    Research Article

    Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.