Novel protein markers of androgen activity in humans: proteomic study of plasma from young chemically castrated men

Abstract

Background:

Reliable biomarkers of androgen activity in humans are lacking. The aim of this study was, therefore, to identify new protein markers of biological androgen activity and test their predictive value in relation to low vs. normal testosterone values and some androgen deficiency linked pathologies.

Methods:

Blood samples from 30 healthy GnRH-antagonist treated males were collected at three time points: a) before GnRH antagonist administration; b) 3 weeks later, just before testosterone undecanoate injection, and c) after additional 2 weeks. Subsequently they were analysed by mass spectrometry to identify potential protein biomarkers of testosterone activity. Levels of proteins most significantly associated with testosterone fluctuations were further tested in a cohort of 75 hypo- and eugonadal males suffering from infertility. Associations between levels of those markers and cardio-metabolic parameters, bone mineral density as well as androgen receptor CAG repeat lengths, were explored.

Results:

Using ROC analysis, 4-hydroxyphenylpyruvate dioxygenase (4HPPD), insulin-like growth factor-binding protein 6 (IGFBP6) and fructose-bisphosphate aldolase (ALDOB), as well as a Multi Marker Algorithm, based on levels of 4HPPD and IGFBP6, were shown to be best predictors of low (< 8 nmol/L) vs. normal (> 12 nmol/L) testosterone. They were also more strongly associated with metabolic syndrome and diabetes than testosterone levels. Levels of ALDOB and 4HPPD levels also showed association with AR CAG-repeat lengths.

Conclusions:

We identified potential new protein biomarkers of testosterone action. Further investigations to elucidate their clinical potential are warranted.

Funding:

The work was supported by ReproUnion 2.0 (grant no 20201846), which is funded by the Interreg V EU program.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (60) partner repository with the dataset identifier PXD024448.Supplementary tables (datasets):https://doi.org/10.6084/m9.figshare.14875431Source data of the Figures can be found on:https://doi.org/10.6084/m9.figshare.14875431Supplementary Figure S1 (Figure 2-figure supplement 1):https://doi.org/10.6084/m9.figshare.14876562

The following data sets were generated

Article and author information

Author details

  1. Aleksander Giwercman

    Department of Translational Medicine, Lund University, Malmo, Sweden
    For correspondence
    aleksander.giwercman@med.lu.se
    Competing interests
    Aleksander Giwercman, received consulting fees from Besins Healthcare. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5816-0785
  2. K Barbara Sahlin

    Department of Biomedical Engineering, Lund University, Lund, Sweden
    Competing interests
    No competing interests declared.
  3. Indira Pla Parada

    Department of Biomedical Engineering, Lund University, Lund, Sweden
    Competing interests
    No competing interests declared.
  4. Krzysztof Pawlowski

    Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warszawa, Poland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5367-0935
  5. Carl Fehninger

    Department of Biomedical Engineering, Lund University, Lund, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0922-7749
  6. Yvonne Lundberg Giwercman

    Department of Translational Medicine, Lund University, Malmo, Sweden
    Competing interests
    No competing interests declared.
  7. Irene Leijonhufvud

    Department of Translational Medicine, Lund University, Malmo, Sweden
    Competing interests
    No competing interests declared.
  8. Roger Appelqvist

    Department of Biomedical Engineering, Lund University, Lund, Sweden
    Competing interests
    No competing interests declared.
  9. György Marko-Varga

    Department of Biomedical Engineering, Lund University, Lund, Sweden
    Competing interests
    No competing interests declared.
  10. Aniel Sanchez

    Department of Biomedical Engineering, Lund University, Lund, Sweden
    Competing interests
    No competing interests declared.
  11. Johan Malm

    Department of Translational Medicine, Lund University, Malmo, Sweden
    Competing interests
    No competing interests declared.

Funding

ReproUnion (20201846)

  • Aleksander Giwercman

Swedish Governmental Fund for Clinical Research

  • Aleksander Giwercman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nima Sharifi, Cleveland Clinic, United States

Ethics

Human subjects: All subjects were enrolled with informed written consent. The two studies from which they were recruited were approved by the Swedish Ethical Review Authority (Approval number: DNR 2014/311, date of approval 8 May 2014; DNR 2011/1, date of approval 11 January 2011).

Version history

  1. Received: October 12, 2021
  2. Preprint posted: November 14, 2021 (view preprint)
  3. Accepted: February 28, 2022
  4. Accepted Manuscript published: March 1, 2022 (version 1)
  5. Version of Record published: April 8, 2022 (version 2)

Copyright

© 2022, Giwercman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 893
    views
  • 153
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksander Giwercman
  2. K Barbara Sahlin
  3. Indira Pla Parada
  4. Krzysztof Pawlowski
  5. Carl Fehninger
  6. Yvonne Lundberg Giwercman
  7. Irene Leijonhufvud
  8. Roger Appelqvist
  9. György Marko-Varga
  10. Aniel Sanchez
  11. Johan Malm
(2022)
Novel protein markers of androgen activity in humans: proteomic study of plasma from young chemically castrated men
eLife 11:e74638.
https://doi.org/10.7554/eLife.74638

Share this article

https://doi.org/10.7554/eLife.74638

Further reading

    1. Medicine
    Gordon L Klein
    Review Article

    Bone releases calcium and phosphate in response to pro-inflammatory cytokine-mediated inflammation. The body develops impaired urinary excretion of phosphate with age and chronic inflammation given the reduction of the kidney protein Klotho, which is essential to phosphate excretion. Phosphate may also play a role in the development of the resistance of the parathyroid calcium-sensing receptor (CaSR) to circulating calcium thus contributing to calcium retention in the circulation. Phosphate can contribute to vascular smooth muscle dedifferentiation with manifestation of osteoblastogenesis and ultimately endovascular calcium phosphate precipitation. Thus phosphate, along with calcium, contributes to the calcification and inflammation of atherosclerotic plaques and the origin of these elements is likely the bone, which serves as storage for the majority of the body’s supply of extracellular calcium and phosphate. Early cardiac evaluation of patients with chronic inflammation and attempts at up-regulating the parathyroid CaSR with calcimimetics or introducing earlier anti-resorptive treatment with bone active pharmacologic agents may serve to delay onset or reduce the quantity of atherosclerotic plaque calcification in these patients.

    1. Computational and Systems Biology
    2. Medicine
    Seo-Gyeong Bae, Guo Nan Yin ... Jihwan Park
    Research Article

    Erectile dysfunction (ED) affects a significant proportion of men aged 40–70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.