DNA-PK promotes DNA end resection at DNA double strand breaks in G0 cells

  1. Faith C Fowler
  2. Bo-Ruei Chen
  3. Nicholas Zolnerowich
  4. Wei Wu
  5. Raphael Pavani
  6. Jacob Paiano
  7. Chelsea Peart
  8. Zulong Chen
  9. André Nussenzweig
  10. Barry P Sleckman  Is a corresponding author
  11. Jessica K Tyler  Is a corresponding author
  1. Weill Cornell Medicine, United States
  2. University of Alabama at Birmingham, United States
  3. National Cancer Institute, United States

Abstract

DNA double-strand break (DSB) repair by homologous recombination is confined to the S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase and non-cycling quiescent (G0) cells where DSBs are predominately repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G0 murine and human cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. In contrast, a requirement for DNA-PK in promoting DNA end resection in proliferating cells at the G1 or G2 phase of the cell cycle was not observed. Our findings establish that DNA-PK uniquely promotes DNA end resection in G0, but not in G1 or G2 phase cells, which has important implications for DNA DSB repair in quiescent cells.

Data availability

Sequencing data have been deposited in GEO under accession codesGSE186087

The following data sets were generated

Article and author information

Author details

  1. Faith C Fowler

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7180-8141
  2. Bo-Ruei Chen

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6404-2099
  3. Nicholas Zolnerowich

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Wei Wu

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  5. Raphael Pavani

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Jacob Paiano

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Chelsea Peart

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  8. Zulong Chen

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  9. André Nussenzweig

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Barry P Sleckman

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    bps@uab.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8295-4462
  11. Jessica K Tyler

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    For correspondence
    jet2021@med.cornell.edu
    Competing interests
    Jessica K Tyler, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9765-1659

Funding

NIH Office of the Director (R35 GM139816)

  • Jessica K Tyler

NIH Office of the Director (RO1 CA95641)

  • Jessica K Tyler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Version history

  1. Received: October 14, 2021
  2. Preprint posted: October 21, 2021 (view preprint)
  3. Accepted: May 6, 2022
  4. Accepted Manuscript published: May 16, 2022 (version 1)
  5. Version of Record published: May 20, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,322
    views
  • 525
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Faith C Fowler
  2. Bo-Ruei Chen
  3. Nicholas Zolnerowich
  4. Wei Wu
  5. Raphael Pavani
  6. Jacob Paiano
  7. Chelsea Peart
  8. Zulong Chen
  9. André Nussenzweig
  10. Barry P Sleckman
  11. Jessica K Tyler
(2022)
DNA-PK promotes DNA end resection at DNA double strand breaks in G0 cells
eLife 11:e74700.
https://doi.org/10.7554/eLife.74700

Share this article

https://doi.org/10.7554/eLife.74700

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.