DNA-PK promotes DNA end resection at DNA double strand breaks in G0 cells

  1. Faith C Fowler
  2. Bo-Ruei Chen
  3. Nicholas Zolnerowich
  4. Wei Wu
  5. Raphael Pavani
  6. Jacob Paiano
  7. Chelsea Peart
  8. Zulong Chen
  9. André Nussenzweig
  10. Barry P Sleckman  Is a corresponding author
  11. Jessica K Tyler  Is a corresponding author
  1. Weill Cornell Medicine, United States
  2. University of Alabama at Birmingham, United States
  3. National Cancer Institute, United States

Abstract

DNA double-strand break (DSB) repair by homologous recombination is confined to the S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase and non-cycling quiescent (G0) cells where DSBs are predominately repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G0 murine and human cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. In contrast, a requirement for DNA-PK in promoting DNA end resection in proliferating cells at the G1 or G2 phase of the cell cycle was not observed. Our findings establish that DNA-PK uniquely promotes DNA end resection in G0, but not in G1 or G2 phase cells, which has important implications for DNA DSB repair in quiescent cells.

Data availability

Sequencing data have been deposited in GEO under accession codesGSE186087

The following data sets were generated

Article and author information

Author details

  1. Faith C Fowler

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7180-8141
  2. Bo-Ruei Chen

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6404-2099
  3. Nicholas Zolnerowich

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Wei Wu

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  5. Raphael Pavani

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Jacob Paiano

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Chelsea Peart

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  8. Zulong Chen

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  9. André Nussenzweig

    Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Barry P Sleckman

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    bps@uab.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8295-4462
  11. Jessica K Tyler

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    For correspondence
    jet2021@med.cornell.edu
    Competing interests
    Jessica K Tyler, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9765-1659

Funding

NIH Office of the Director (R35 GM139816)

  • Jessica K Tyler

NIH Office of the Director (RO1 CA95641)

  • Jessica K Tyler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,664
    views
  • 558
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Faith C Fowler
  2. Bo-Ruei Chen
  3. Nicholas Zolnerowich
  4. Wei Wu
  5. Raphael Pavani
  6. Jacob Paiano
  7. Chelsea Peart
  8. Zulong Chen
  9. André Nussenzweig
  10. Barry P Sleckman
  11. Jessica K Tyler
(2022)
DNA-PK promotes DNA end resection at DNA double strand breaks in G0 cells
eLife 11:e74700.
https://doi.org/10.7554/eLife.74700

Share this article

https://doi.org/10.7554/eLife.74700

Further reading

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.