Coil-to-a-helix transition at the Nup358-BicD2 interfaceactivates BicD2 for dynein recruitment

  1. James Gibson
  2. Heying Cui
  3. M Yusuf Ali
  4. Xioaxin Zhao
  5. Erik W Debler
  6. Jing Zhao
  7. Kathleen M Trybus  Is a corresponding author
  8. Sozanne R Solmaz  Is a corresponding author
  9. Chunyu Wang  Is a corresponding author
  1. Rensselaer Polytechnic Institute, United States
  2. Binghamton University, United States
  3. University of Vermont, United States
  4. Thomas Jefferson University, United States

Abstract

Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance (NMR) titration and chemical exchange saturation transfer (CEST), mutagenesis and circular dichroism spectroscopy (CD), a Nup358 a-helix encompassing residues 2162-2184 was identified, which transitioned from a random coil to an a-helical conformation upon BicD2-binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 though a 'cargo recognition a-helix', a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.

Data availability

Protein backbone assignments have been deposited in the BMRB under accession code 5182. All other data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1, 2, 3, 4, 5, 6, 7, and 8.

Article and author information

Author details

  1. James Gibson

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9378-0135
  2. Heying Cui

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. M Yusuf Ali

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xioaxin Zhao

    Department of Biological Sciences, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik W Debler

    Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2587-2150
  6. Jing Zhao

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kathleen M Trybus

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    For correspondence
    Kathleen.Trybus@med.uvm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5583-8500
  8. Sozanne R Solmaz

    Department of Chemistry, Binghamton University, Binghamton, United States
    For correspondence
    ssolmaz@binghamton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1703-3701
  9. Chunyu Wang

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    For correspondence
    wangc5@rpi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5165-7959

Funding

NIH Office of the Director (R01 GM144578)

  • M Yusuf Ali
  • Sozanne R Solmaz
  • Chunyu Wang

NIH Office of the Director (CA206592)

  • Chunyu Wang

NIH Office of the Director (AG069039)

  • Chunyu Wang

NIH Office of the Director (R15 GM128119)

  • Sozanne R Solmaz

Chemistry Department and the Research Foundation of SUNY

  • Sozanne R Solmaz

NIH Office of the Director (R35 GM136288)

  • Kathleen M Trybus

NIH Office of the Director (R03 NS114115)

  • M Yusuf Ali

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gibson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,836
    views
  • 251
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Gibson
  2. Heying Cui
  3. M Yusuf Ali
  4. Xioaxin Zhao
  5. Erik W Debler
  6. Jing Zhao
  7. Kathleen M Trybus
  8. Sozanne R Solmaz
  9. Chunyu Wang
(2022)
Coil-to-a-helix transition at the Nup358-BicD2 interfaceactivates BicD2 for dynein recruitment
eLife 11:e74714.
https://doi.org/10.7554/eLife.74714

Share this article

https://doi.org/10.7554/eLife.74714

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.