Epithelial-to-mesenchymal transition proceeds through directional destabilization of multidimensional attractor

  1. Weikang Wang  Is a corresponding author
  2. Dante Poe
  3. Yaxuan Yang
  4. Thomas Hyatt
  5. Jianhua Xing  Is a corresponding author
  1. University of Pittsburgh, United States

Abstract

How a cell changes from one stable phenotype to another one is a fundamental problem in developmental and cell biology. Mathematically a stable phenotype corresponds to a stable attractor in a generally multi-dimensional state space, which needs to be destabilized so the cell relaxes to a new attractor. Two basic mechanisms for destabilizing a stable fixed point, pitchfork and saddle-node bifurcations, have been extensively studied theoretically, however direct experimental investigation at the single cell level remains scarce. Here we performed live cell imaging studies and analyses in the framework of dynamical systems theories on epithelial-to-mesenchymal transition (EMT). While some mechanistic details remain controversial, EMT is a cell phenotypic transition (CPT) process central to development and pathology. Through time-lapse imaging we recorded single cell trajectories of human A549/Vim-RFP cells undergoing EMT induced by different concentrations of exogenous TGF-β in a multi-dimensional cell feature space. The trajectories clustered into two distinct groups, indicating that the transition dynamics proceeds through parallel paths. We then reconstructed the reaction coordinates and the corresponding quasi-potentials from the trajectories. The potentials revealed a plausible mechanism for the emergence of the two paths where the original stable epithelial attractor collides with two saddle points sequentially with increased TGF-β concentration, and relaxes to a new one. Functionally the directional saddle-node bifurcation ensures a CPT proceeds towards a specific cell type, as a mechanistic realization of the canalization idea proposed by Waddington.

Data availability

The computer code are shared on GitHub, so other researchers can run to reproduce Figure 3, 4, and 5. The processed single cell trajectory data are on Dryad

The following data sets were generated

Article and author information

Author details

  1. Weikang Wang

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    weikang@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Dante Poe

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yaxuan Yang

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Hyatt

    Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianhua Xing

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    xing1@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3700-8765

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK119232)

  • Jianhua Xing

National Cancer Institute (R37 CA232209)

  • Jianhua Xing

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,249
    views
  • 390
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weikang Wang
  2. Dante Poe
  3. Yaxuan Yang
  4. Thomas Hyatt
  5. Jianhua Xing
(2022)
Epithelial-to-mesenchymal transition proceeds through directional destabilization of multidimensional attractor
eLife 11:e74866.
https://doi.org/10.7554/eLife.74866

Share this article

https://doi.org/10.7554/eLife.74866

Further reading

    1. Physics of Living Systems
    Jonathan H Booth, Andrew T Meek ... Malte C Gather
    Research Article

    During locomotion, soft-bodied terrestrial animals solve complex control problems at substrate interfaces, but our understanding of how they achieve this without rigid components remains incomplete. Here, we develop new all-optical methods based on optical interference in a deformable substrate to measure ground reaction forces (GRFs) with micrometre and nanonewton precision in behaving Drosophila larvae. Combining this with a kinematic analysis of substrate-interfacing features, we shed new light onto the biomechanical control of larval locomotion. Crawling in larvae measuring ~1 mm in length involves an intricate pattern of cuticle sequestration and planting, producing GRFs of 1–7 µN. We show that larvae insert and expand denticulated, feet-like structures into substrates as they move, a process not previously observed in soft-bodied animals. These ‘protopodia’ form dynamic anchors to compensate counteracting forces. Our work provides a framework for future biomechanics research in soft-bodied animals and promises to inspire improved soft-robot design.

    1. Physics of Living Systems
    Nicholas LaBerge, Kenneth Hunter Wapman ... Daniel B Larremore
    Research Article

    Despite long-running efforts to increase gender diversity among tenured and tenure-track faculty in the U.S., women remain underrepresented in most academic fields, sometimes dramatically so. Here, we quantify the relative importance of faculty hiring and faculty attrition for both past and future faculty gender diversity using comprehensive data on the training and employment of 268,769 tenured and tenure-track faculty rostered at 12,112U.S. PhD-granting departments, spanning 111 academic fields between 2011 and 2020. Over this time, we find that hiring had a far greater impact on women’s representation among faculty than attrition in the majority (90.1%) of academic fields, even as academia loses a higher share of women faculty relative to men at every career stage. Finally, we model the impact of five specific policy interventions on women’s representation, and project that eliminating attrition differences between women and men only leads to a marginal increase in women’s overall representation—in most fields, successful interventions will need to make substantial and sustained changes to hiring in order to reach gender parity.