Epithelial-to-mesenchymal transition proceeds through directional destabilization of multidimensional attractor

  1. Weikang Wang  Is a corresponding author
  2. Dante Poe
  3. Yaxuan Yang
  4. Thomas Hyatt
  5. Jianhua Xing  Is a corresponding author
  1. University of Pittsburgh, United States

Abstract

How a cell changes from one stable phenotype to another one is a fundamental problem in developmental and cell biology. Mathematically a stable phenotype corresponds to a stable attractor in a generally multi-dimensional state space, which needs to be destabilized so the cell relaxes to a new attractor. Two basic mechanisms for destabilizing a stable fixed point, pitchfork and saddle-node bifurcations, have been extensively studied theoretically, however direct experimental investigation at the single cell level remains scarce. Here we performed live cell imaging studies and analyses in the framework of dynamical systems theories on epithelial-to-mesenchymal transition (EMT). While some mechanistic details remain controversial, EMT is a cell phenotypic transition (CPT) process central to development and pathology. Through time-lapse imaging we recorded single cell trajectories of human A549/Vim-RFP cells undergoing EMT induced by different concentrations of exogenous TGF-β in a multi-dimensional cell feature space. The trajectories clustered into two distinct groups, indicating that the transition dynamics proceeds through parallel paths. We then reconstructed the reaction coordinates and the corresponding quasi-potentials from the trajectories. The potentials revealed a plausible mechanism for the emergence of the two paths where the original stable epithelial attractor collides with two saddle points sequentially with increased TGF-β concentration, and relaxes to a new one. Functionally the directional saddle-node bifurcation ensures a CPT proceeds towards a specific cell type, as a mechanistic realization of the canalization idea proposed by Waddington.

Data availability

The computer code are shared on GitHub, so other researchers can run to reproduce Figure 3, 4, and 5. The processed single cell trajectory data are on Dryad

The following data sets were generated

Article and author information

Author details

  1. Weikang Wang

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    weikang@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Dante Poe

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yaxuan Yang

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Hyatt

    Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianhua Xing

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    xing1@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3700-8765

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK119232)

  • Jianhua Xing

National Cancer Institute (R37 CA232209)

  • Jianhua Xing

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, University College London, United Kingdom

Publication history

  1. Preprint posted: January 28, 2020 (view preprint)
  2. Received: October 20, 2021
  3. Accepted: February 6, 2022
  4. Accepted Manuscript published: February 21, 2022 (version 1)
  5. Version of Record published: March 14, 2022 (version 2)

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,458
    Page views
  • 278
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weikang Wang
  2. Dante Poe
  3. Yaxuan Yang
  4. Thomas Hyatt
  5. Jianhua Xing
(2022)
Epithelial-to-mesenchymal transition proceeds through directional destabilization of multidimensional attractor
eLife 11:e74866.
https://doi.org/10.7554/eLife.74866

Further reading

    1. Physics of Living Systems
    Robin Thandiackal, George Lauder
    Research Article Updated

    Schooling in fish is linked to a number of factors such as increased foraging success, predator avoidance, and social interactions. In addition, a prevailing hypothesis is that swimming in groups provides energetic benefits through hydrodynamic interactions. Thrust wakes are frequently occurring flow structures in fish schools as they are shed behind swimming fish. Despite increased flow speeds in these wakes, recent modeling work has suggested that swimming directly in-line behind an individual may lead to increased efficiency. However, only limited data are available on live fish interacting with thrust wakes. Here we designed a controlled experiment in which brook trout, Salvelinus fontinalis, interact with thrust wakes generated by a robotic mechanism that produces a fish-like wake. We show that trout swim in thrust wakes, reduce their tail-beat frequencies, and synchronize with the robotic flapping mechanism. Our flow and pressure field analysis revealed that the trout are interacting with oncoming vortices and that they exhibit reduced pressure drag at the head compared to swimming in isolation. Together, these experiments suggest that trout swim energetically more efficiently in thrust wakes and support the hypothesis that swimming in the wake of one another is an advantageous strategy to save energy in a school.

    1. Physics of Living Systems
    Iain D Couzin, Liang Li
    Insight

    When a fish beats its tail, it produces vortices in the water that other fish could take advantage of to save energy while swimming.