Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection

Abstract

Liquid-liquid phase separation (LLPS) plays important roles in forming cellular membraneless organelles. However, how host factors regulate LLPS of viral proteins during negative-sense RNA (NSR) virus infection is largely unknown. Here, we used Barley yellow striate mosaic virus (BYSMV) as a model to demonstrate regulation of host casein kinase 1 in phase separation and infection of NSR viruses. We first found that the BYSMV phosphoprotein (P) formed spherical granules with liquid properties and recruited viral nucleotide (N) and polymerase (L) proteins in vivo. Moreover, the P-formed granules were tethered to the ER/actin network for trafficking and fusion. BYSMV P alone formed droplets and incorporated the N protein and the 5′ trailer of genomic RNA in vitro. Interestingly, phase separation of BYSMV P was inhibited by host casein kinase 1 (CK1)-dependent phosphorylation of an intrinsically disordered P protein region. Genetic assays demonstrated that the unphosphorylated mutant of BYSMV P exhibited condensed phase, which promoted viroplasm formation and virus replication. Whereas, the phosphorylation-mimic mutant existed in diffuse phase state for virus transcription. Collectively, our results demonstrate that host CK1 modulates phase separation of the viral P protein and virus infection.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Xiao-Dong Fang

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiang Gao

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ying Zang

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ji-Hui Qiao

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Dong-Min Gao

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wen-Ya Xu

    College of Biological Sciences, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ying Wang

    College of Plant Protection, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Dawei Li

    State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4133-1263
  9. Xian-Bing Wang

    College of Biological Sciences, China Agricultural University, Beijing, China
    For correspondence
    wangxianbing@cau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3082-2462

Funding

National Natural Science Foundation of China (31872920)

  • Xian-Bing Wang

National Natural Science Foundation of China (32102150)

  • Qiang Gao

China Postdoctoral Science Foundation (2021T140713)

  • Qiang Gao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Savithramma P Dinesh-Kumar, University of California, Davis, United States

Version history

  1. Received: October 20, 2021
  2. Preprint posted: November 16, 2021 (view preprint)
  3. Accepted: February 21, 2022
  4. Accepted Manuscript published: February 22, 2022 (version 1)
  5. Accepted Manuscript updated: February 24, 2022 (version 2)
  6. Version of Record published: March 1, 2022 (version 3)

Copyright

© 2022, Fang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,631
    views
  • 334
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao-Dong Fang
  2. Qiang Gao
  3. Ying Zang
  4. Ji-Hui Qiao
  5. Dong-Min Gao
  6. Wen-Ya Xu
  7. Ying Wang
  8. Dawei Li
  9. Xian-Bing Wang
(2022)
Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection
eLife 11:e74884.
https://doi.org/10.7554/eLife.74884

Share this article

https://doi.org/10.7554/eLife.74884

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.