Neural correlates and determinants of approach-avoidance conflict in the prelimbic prefrontal cortex

  1. Jose A Fernandez-Leon
  2. Douglas S Engelke
  3. Guillermo Aquino-Miranda
  4. Alexandria Goodson
  5. Maria N Rasheed
  6. Fabricio H Do Monte  Is a corresponding author
  1. CIFICEN (UNCPBA-CONICET-CICPBA), Argentina
  2. The University of Texas Health Science Center at Houston, United States
  3. Rice University, United States

Abstract

The recollection of environmental cues associated with threat or reward allows animals to select the most appropriate behavioral responses. Neurons in the prelimbic cortex (PL) respond to both threat- and reward-associated cues. However, it remains unknown whether PL regulates threat-avoidance vs. reward-approaching responses when an animals' decision depends on previously associated memories. Using a conflict model in which male Long-Evans rats retrieve memories of shock- and food-paired cues, we observed two distinct phenotypes during conflict: i) rats that continued to press a lever for food (Pressers); and ii) rats that exhibited a complete suppression in food seeking (Non-pressers). Single-unit recordings revealed that increased risk-taking behavior in Pressers is associated with persistent food-cue responses in PL, and reduced spontaneous activity in PL glutamatergic (PLGLUT) neurons during conflict. Activating PLGLUT neurons in Pressers attenuated food-seeking responses in a neutral context, whereas inhibiting PLGLUT neurons in Non-pressers reduced defensive responses and increased food approaching during conflict. Our results establish a causal role for PLGLUT neurons in mediating individual variability in memory-based risky decision making by regulating threat-avoidance vs. reward-approach behaviors.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all main figures and and supplementary data. We also have included detailed statistical analises supplementary table availale.

Article and author information

Author details

  1. Jose A Fernandez-Leon

    CIFICEN (UNCPBA-CONICET-CICPBA), Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7166-9738
  2. Douglas S Engelke

    Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guillermo Aquino-Miranda

    Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6185-4112
  4. Alexandria Goodson

    Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria N Rasheed

    Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabricio H Do Monte

    Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, United States
    For correspondence
    fabricio.h.domonte@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1079-0064

Funding

NIH Blueprint for Neuroscience Research (MH120136-01A1)

  • Douglas S Engelke
  • Guillermo Aquino-Miranda
  • Fabricio H Do Monte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Center for Laboratory Animal Medicine and Care of The University of Texas Health Science Center at Houston. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AWC-19-0103). The National Institutes of Health guidelines for the care and use of laboratory animals were strictly followed to minimize any potential discomfort and suffering of the animals.

Copyright

© 2021, Fernandez-Leon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,400
    views
  • 452
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jose A Fernandez-Leon
  2. Douglas S Engelke
  3. Guillermo Aquino-Miranda
  4. Alexandria Goodson
  5. Maria N Rasheed
  6. Fabricio H Do Monte
(2021)
Neural correlates and determinants of approach-avoidance conflict in the prelimbic prefrontal cortex
eLife 10:e74950.
https://doi.org/10.7554/eLife.74950

Share this article

https://doi.org/10.7554/eLife.74950

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.