Enteroendocrine cell types that drive food reward and aversion

  1. Ling Bai
  2. Nilla Sivakumar
  3. Shenliang Yu
  4. Sheyda Mesgarzadeh
  5. Tom Ding
  6. Truong Ly
  7. Timothy V Corpuz
  8. James CR Grove
  9. Brooke C Jarvie
  10. Zachary A Knight  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Howard Hughes Medical Institute, University of California, San Francisco, United States

Abstract

Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.

Data availability

Source data is included in the manuscript. RNA-seq data is available from the Gene Expression Omnibus (GSE203200). Villin-Flp mice have been deposited at Jackson laboratory.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ling Bai

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nilla Sivakumar

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shenliang Yu

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sheyda Mesgarzadeh

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0138-5566
  5. Tom Ding

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Truong Ly

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Timothy V Corpuz

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James CR Grove

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Brooke C Jarvie

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Zachary A Knight

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    zachary.knight@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7621-1478

Funding

National Institutes of Health (R01-DK106399)

  • Zachary A Knight

National Institutes of Health (RF1-NS116626)

  • Zachary A Knight

Howard Hughes Medical Institute (Investigator)

  • Zachary A Knight

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were approved by the University of California, San Francisco IACUC (protocol #AN179674) following the National Institutes of Health guidelines for the Care and Use of Laboratory Animals.

Copyright

© 2022, Bai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,173
    views
  • 1,175
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ling Bai
  2. Nilla Sivakumar
  3. Shenliang Yu
  4. Sheyda Mesgarzadeh
  5. Tom Ding
  6. Truong Ly
  7. Timothy V Corpuz
  8. James CR Grove
  9. Brooke C Jarvie
  10. Zachary A Knight
(2022)
Enteroendocrine cell types that drive food reward and aversion
eLife 11:e74964.
https://doi.org/10.7554/eLife.74964

Share this article

https://doi.org/10.7554/eLife.74964

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Neuroscience
    Iustin V Tabarean
    Research Article

    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4–5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.