The missing link between genetic association and regulatory function

  1. Noah James Connally  Is a corresponding author
  2. Sumaiya Nazeen
  3. Daniel Lee
  4. Huwenbo Shi
  5. John Stamatoyannopoulos
  6. Sung Chun
  7. Chris Cotsapas  Is a corresponding author
  8. Christopher A Cassa  Is a corresponding author
  9. Shamil R Sunyaev  Is a corresponding author
  1. Harvard Medical School, United States
  2. Harvard TH Chan School of Public Health, United States
  3. Altius Institute for Biomedical Sciences, United States
  4. Boston Children's Hospital, United States
  5. Broad Institute, United States
  6. Brigham and Women's Hospital, United States

Abstract

The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic data sets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic eQTLs, suggesting that better models are needed. The field must confront this deficit, and pursue this 'missing regulation'.

Data availability

Numerical data for results is included in Source Data 1.The dataset generated (GWAS summary statistics conditioned on coding variants) can be found at doi:10.5061/dryad.612jm644q

The following data sets were generated
    1. Connally NJ
    (2022) GWAS results conditioned on coding variants
    Dryad Digital Repository, doi:10.5061/dryad.612jm644q.
The following previously published data sets were used
    1. UK Biobank
    (2012) UK Biobank
    http://www.ukbiobank.ac.uk/.
    1. TOPMed Consortium
    (2021) NHLBI TOPMed
    https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2.

Article and author information

Author details

  1. Noah James Connally

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    For correspondence
    noahconnally@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3818-6739
  2. Sumaiya Nazeen

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Lee

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Huwenbo Shi

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John Stamatoyannopoulos

    Altius Institute for Biomedical Sciences, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sung Chun

    Division of Pulmonary Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chris Cotsapas

    Program in Medical and Population Genetics, Broad Institute, New Haven, United States
    For correspondence
    cotsapas@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher A Cassa

    Division of Genetics, Brigham and Women's Hospital, Boston, United States
    For correspondence
    cassa@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Shamil R Sunyaev

    Division of Genetics, Brigham and Women's Hospital, Boston, United States
    For correspondence
    ssunyaev@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5715-5677

Funding

National Institutes of Health (R35GM127131)

  • Shamil R Sunyaev

National Institutes of Health (R01HG010372)

  • Shamil R Sunyaev

National Institutes of Health (R01MH101244)

  • Shamil R Sunyaev

National Institutes of Health (U01HG012009)

  • Chris Cotsapas

National Institutes of Health (T32GM74897)

  • Shamil R Sunyaev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Connally et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,770
    views
  • 1,020
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah James Connally
  2. Sumaiya Nazeen
  3. Daniel Lee
  4. Huwenbo Shi
  5. John Stamatoyannopoulos
  6. Sung Chun
  7. Chris Cotsapas
  8. Christopher A Cassa
  9. Shamil R Sunyaev
(2022)
The missing link between genetic association and regulatory function
eLife 11:e74970.
https://doi.org/10.7554/eLife.74970

Share this article

https://doi.org/10.7554/eLife.74970

Further reading

    1. Genetics and Genomics
    Nathan M Shugarts Devanapally, Aishwarya Sathya ... Antony M Jose
    Research Article

    RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.