The missing link between genetic association and regulatory function

  1. Noah James Connally  Is a corresponding author
  2. Sumaiya Nazeen
  3. Daniel Lee
  4. Huwenbo Shi
  5. John Stamatoyannopoulos
  6. Sung Chun
  7. Chris Cotsapas  Is a corresponding author
  8. Christopher A Cassa  Is a corresponding author
  9. Shamil R Sunyaev  Is a corresponding author
  1. Harvard Medical School, United States
  2. Harvard TH Chan School of Public Health, United States
  3. Altius Institute for Biomedical Sciences, United States
  4. Boston Children's Hospital, United States
  5. Broad Institute, United States
  6. Brigham and Women's Hospital, United States

Abstract

The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic data sets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic eQTLs, suggesting that better models are needed. The field must confront this deficit, and pursue this 'missing regulation'.

Data availability

Numerical data for results is included in Source Data 1.The dataset generated (GWAS summary statistics conditioned on coding variants) can be found at doi:10.5061/dryad.612jm644q

The following data sets were generated
    1. Connally NJ
    (2022) GWAS results conditioned on coding variants
    Dryad Digital Repository, doi:10.5061/dryad.612jm644q.
The following previously published data sets were used
    1. UK Biobank
    (2012) UK Biobank
    http://www.ukbiobank.ac.uk/.
    1. TOPMed Consortium
    (2021) NHLBI TOPMed
    https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2.

Article and author information

Author details

  1. Noah James Connally

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    For correspondence
    noahconnally@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3818-6739
  2. Sumaiya Nazeen

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Lee

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Huwenbo Shi

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John Stamatoyannopoulos

    Altius Institute for Biomedical Sciences, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sung Chun

    Division of Pulmonary Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chris Cotsapas

    Program in Medical and Population Genetics, Broad Institute, New Haven, United States
    For correspondence
    cotsapas@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher A Cassa

    Division of Genetics, Brigham and Women's Hospital, Boston, United States
    For correspondence
    cassa@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Shamil R Sunyaev

    Division of Genetics, Brigham and Women's Hospital, Boston, United States
    For correspondence
    ssunyaev@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5715-5677

Funding

National Institutes of Health (R35GM127131)

  • Shamil R Sunyaev

National Institutes of Health (R01HG010372)

  • Shamil R Sunyaev

National Institutes of Health (R01MH101244)

  • Shamil R Sunyaev

National Institutes of Health (U01HG012009)

  • Chris Cotsapas

National Institutes of Health (T32GM74897)

  • Shamil R Sunyaev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Connally et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,018
    views
  • 1,053
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah James Connally
  2. Sumaiya Nazeen
  3. Daniel Lee
  4. Huwenbo Shi
  5. John Stamatoyannopoulos
  6. Sung Chun
  7. Chris Cotsapas
  8. Christopher A Cassa
  9. Shamil R Sunyaev
(2022)
The missing link between genetic association and regulatory function
eLife 11:e74970.
https://doi.org/10.7554/eLife.74970

Share this article

https://doi.org/10.7554/eLife.74970

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.