Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum

  1. Omid A Zobeiri
  2. Kathleen E Cullen  Is a corresponding author
  1. McGill University, Canada
  2. Johns Hopkins University, United States

Abstract

The ability to accurately control our posture and perceive spatial orientation during self-motion requires knowledge of the motion of both the head and body. However, whereas the vestibular sensors and nuclei directly encode head motion, no sensors directly encode body motion. Instead, the integration of vestibular and neck proprioceptive inputs is necessary to transform vestibular information into the body-centric reference frame required for postural control. The anterior vermis of the cerebellum is thought to play a key role in this transformation, yet how its Purkinje cells integrate these inputs or what information they dynamically encode during self-motion remains unknown. Here we recorded the activity of individual anterior vermis Purkinje cells in alert monkeys during passively applied whole-body, body-under-head, and head-on-body rotations. Most neurons dynamically encoded an intermediate representation of self-motion between head and body motion. Notably, these neurons responded to both vestibular and neck proprioceptive stimulation and showed considerable heterogeneity in their response dynamics. Furthermore, their vestibular responses demonstrated tuning in response to changes in head-on-body position. In contrast, a small remaining percentage of neurons sensitive only to vestibular stimulation unambiguously encoded head-in-space motion across conditions. Using a simple population model, we establish that combining responses from ~40-50 Purkinje cells can explain the responses of their target neurons in deep cerebellar nuclei across all self-motion conditions. We propose that the observed heterogeneity in Purkinje cells underlies the cerebellum's capacity to compute the dynamic representation of body motion required to ensure accurate postural control and perceptual stability in our daily lives.

Data availability

All data and codes to generate figures are available on Figshare under the URL: https://doi.org/10.6084/m9.figshare.19362239

Article and author information

Author details

  1. Omid A Zobeiri

    Department of Biomedical Engineering, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Kathleen E Cullen

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    kathleen.cullen@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9348-0933

Funding

National Institute on Deafness and Other Communication Disorders (R01-DC002390)

  • Kathleen E Cullen

National Institute on Deafness and Other Communication Disorders (R01-DC018061)

  • Kathleen E Cullen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan R Carey, Champalimaud Foundation, Portugal

Ethics

Animal experimentation: All experimental protocols were approved by the Johns Hopkins University Animal Care and Use Committee and were in compliance with the guidelines of the United States National of Health.(PR19M408)

Version history

  1. Preprint posted: October 26, 2021 (view preprint)
  2. Received: October 26, 2021
  3. Accepted: April 22, 2022
  4. Accepted Manuscript published: April 25, 2022 (version 1)
  5. Version of Record published: May 6, 2022 (version 2)

Copyright

© 2022, Zobeiri & Cullen

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,267
    views
  • 267
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omid A Zobeiri
  2. Kathleen E Cullen
(2022)
Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum
eLife 11:e75018.
https://doi.org/10.7554/eLife.75018

Share this article

https://doi.org/10.7554/eLife.75018

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.