Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum

  1. Omid A Zobeiri
  2. Kathleen E Cullen  Is a corresponding author
  1. McGill University, Canada
  2. Johns Hopkins University, United States

Abstract

The ability to accurately control our posture and perceive spatial orientation during self-motion requires knowledge of the motion of both the head and body. However, whereas the vestibular sensors and nuclei directly encode head motion, no sensors directly encode body motion. Instead, the integration of vestibular and neck proprioceptive inputs is necessary to transform vestibular information into the body-centric reference frame required for postural control. The anterior vermis of the cerebellum is thought to play a key role in this transformation, yet how its Purkinje cells integrate these inputs or what information they dynamically encode during self-motion remains unknown. Here we recorded the activity of individual anterior vermis Purkinje cells in alert monkeys during passively applied whole-body, body-under-head, and head-on-body rotations. Most neurons dynamically encoded an intermediate representation of self-motion between head and body motion. Notably, these neurons responded to both vestibular and neck proprioceptive stimulation and showed considerable heterogeneity in their response dynamics. Furthermore, their vestibular responses demonstrated tuning in response to changes in head-on-body position. In contrast, a small remaining percentage of neurons sensitive only to vestibular stimulation unambiguously encoded head-in-space motion across conditions. Using a simple population model, we establish that combining responses from ~40-50 Purkinje cells can explain the responses of their target neurons in deep cerebellar nuclei across all self-motion conditions. We propose that the observed heterogeneity in Purkinje cells underlies the cerebellum's capacity to compute the dynamic representation of body motion required to ensure accurate postural control and perceptual stability in our daily lives.

Data availability

All data and codes to generate figures are available on Figshare under the URL: https://doi.org/10.6084/m9.figshare.19362239

Article and author information

Author details

  1. Omid A Zobeiri

    Department of Biomedical Engineering, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Kathleen E Cullen

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    kathleen.cullen@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9348-0933

Funding

National Institute on Deafness and Other Communication Disorders (R01-DC002390)

  • Kathleen E Cullen

National Institute on Deafness and Other Communication Disorders (R01-DC018061)

  • Kathleen E Cullen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were approved by the Johns Hopkins University Animal Care and Use Committee and were in compliance with the guidelines of the United States National of Health.(PR19M408)

Copyright

© 2022, Zobeiri & Cullen

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,362
    views
  • 275
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omid A Zobeiri
  2. Kathleen E Cullen
(2022)
Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum
eLife 11:e75018.
https://doi.org/10.7554/eLife.75018

Share this article

https://doi.org/10.7554/eLife.75018

Further reading

    1. Neuroscience
    Moritz F Wurm, Doruk Yiğit Erigüç
    Research Article

    Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent–object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.