Social-affective features drive human representations of observed actions

  1. Diana C Dima  Is a corresponding author
  2. Tyler M Tomita
  3. Christopher J Honey
  4. Leyla Isik
  1. Johns Hopkins University, United States

Abstract

Humans observe actions performed by others in many different visual and social settings. What features do we extract and attend when we view such complex scenes, and how are they processed in the brain? To answer these questions, we curated two large-scale sets of naturalistic videos of everyday actions and estimated their perceived similarity in two behavioral experiments. We normed and quantified a large range of visual, action-related and social-affective features across the stimulus sets. Using a cross-validated variance partitioning analysis, we found that social-affective features predicted similarity judgments better than, and independently of, visual and action features in both behavioral experiments. Next, we conducted an electroencephalography (EEG) experiment, which revealed a sustained correlation between neural responses to videos and their behavioral similarity. Visual, action, and social-affective features predicted neural patterns at early, intermediate and late stages respectively during this behaviorally relevant time window. Together, these findings show that social-affective features are important for perceiving naturalistic actions, and are extracted at the final stage of a temporal gradient in the brain.

Data availability

Behavioral and EEG data and results have been archived as an Open Science Framework repository (https://osf.io/hrmxn/). Analysis code is available on GitHub (https://github.com/dianadima/mot_action).

The following data sets were generated

Article and author information

Author details

  1. Diana C Dima

    Department of Cognitive Science, Johns Hopkins University, Baltimore, United States
    For correspondence
    ddima@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9612-5574
  2. Tyler M Tomita

    Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher J Honey

    Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0745-5089
  4. Leyla Isik

    Department of Cognitive Science, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (CCF-1231216)

  • Leyla Isik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris I Baker, National Institute of Mental Health, National Institutes of Health, United States

Ethics

Human subjects: All procedures for data collection were approved by the Johns Hopkins University Institutional Review Board, with protocol numbers HIRB00009730 for the behavioral experiments and HIRB00009835 for the EEG experiment. Informed consent was obtained from all participants.

Version history

  1. Preprint posted: October 26, 2021 (view preprint)
  2. Received: October 26, 2021
  3. Accepted: May 24, 2022
  4. Accepted Manuscript published: May 24, 2022 (version 1)
  5. Version of Record published: June 1, 2022 (version 2)

Copyright

© 2022, Dima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,599
    views
  • 291
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diana C Dima
  2. Tyler M Tomita
  3. Christopher J Honey
  4. Leyla Isik
(2022)
Social-affective features drive human representations of observed actions
eLife 11:e75027.
https://doi.org/10.7554/eLife.75027

Share this article

https://doi.org/10.7554/eLife.75027

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.