A crowd of BashTheBug volunteers reproducibly and accurately measure the minimum inhibitory concentrations of 13 antitubercular drugs from photographs of 96-well broth microdilution plates
Abstract
Tuberculosis is a respiratory disease that is treatable with antibiotics. An increasing prevalence of resistance means that to ensure a good treatment outcome it is desirable to test the susceptibility of each infection to different antibiotics. Conventionally this is done by culturing a clinical sample and then exposing aliquots to a panel of antibiotics, Using 96-well broth micro dilution plates with each well containing a lyophilised predetermined amount of an antibiotic is a convenient and cost-effective way to measure the MICs of several drugs at once for a clinical sample. Although accurate, this is still an expensive and slow process that requires highly skilled and experienced laboratory scientists. Here we show that, through the BashTheBug project hosted on the Zooniverse citizen science platform, a crowd of volunteers can reproducibly and accurately determine the MICs for 13 drugs and that simply taking the median or mode of 11-17 independent classifications is sufficient. There is therefore a potential role for crowds to support (but not supplant) the role of experts in antibiotic susceptibility testing.
Data availability
The data tables and a Jupyter notebook that allows the user to recreate the majority of figures and tables in both the manuscript and the supplemental information is freely available here: https://github.com/fowler-lab/bashthebug-consensus-datasetIt is setup so a user can either clone the repository and run the jupyter-notebook on their local computer (the installation process having installed the pre-requisites) or by clicking the "Launch Binder" button in the README, they can access and run the jupyter-notebook via their web browser, thereby avoiding any installation.I've added a short statement to the manuscript -- please advise if you think it needs changing.
Article and author information
Author details
Funding
Wellcome Trust (200205/Z/15/Z)
- Philip W Fowler
- Carla Wright
- Sarah W Hoosdally
- Ana L Gibertoni Cruz
- Aysha Roohi
- Samaneh Kouchaki
- Timothy M Walker
- Timothy EA Peto
- David Clifton
- Derrick W Crook
- A Sarah Walker
Bill and Melinda Gates Foundation (OPP1133541)
- Philip W Fowler
- Carla Wright
- Sarah W Hoosdally
- Ana L Gibertoni Cruz
- Aysha Roohi
- Samaneh Kouchaki
- Timothy M Walker
- Timothy EA Peto
- David Clifton
- Derrick W Crook
- A Sarah Walker
Wellcome Trust (203141/Z/16/Z)
- Philip W Fowler
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Fowler et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,410
- views
-
- 268
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Microbiology and Infectious Disease
Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.
-
- Microbiology and Infectious Disease
Certain strains of a bacterium found in the gut of some animals, Lactobacillus plantarum, are able to counter hyperuricemia, a condition caused by high levels of uric acid in the blood.