A crowd of BashTheBug volunteers reproducibly and accurately measure the minimum inhibitory concentrations of 13 antitubercular drugs from photographs of 96-well broth microdilution plates

Abstract

Tuberculosis is a respiratory disease that is treatable with antibiotics. An increasing prevalence of resistance means that to ensure a good treatment outcome it is desirable to test the susceptibility of each infection to different antibiotics. Conventionally this is done by culturing a clinical sample and then exposing aliquots to a panel of antibiotics, Using 96-well broth micro dilution plates with each well containing a lyophilised predetermined amount of an antibiotic is a convenient and cost-effective way to measure the MICs of several drugs at once for a clinical sample. Although accurate, this is still an expensive and slow process that requires highly skilled and experienced laboratory scientists. Here we show that, through the BashTheBug project hosted on the Zooniverse citizen science platform, a crowd of volunteers can reproducibly and accurately determine the MICs for 13 drugs and that simply taking the median or mode of 11-17 independent classifications is sufficient. There is therefore a potential role for crowds to support (but not supplant) the role of experts in antibiotic susceptibility testing.

Data availability

The data tables and a Jupyter notebook that allows the user to recreate the majority of figures and tables in both the manuscript and the supplemental information is freely available here: https://github.com/fowler-lab/bashthebug-consensus-datasetIt is setup so a user can either clone the repository and run the jupyter-notebook on their local computer (the installation process having installed the pre-requisites) or by clicking the "Launch Binder" button in the README, they can access and run the jupyter-notebook via their web browser, thereby avoiding any installation.I've added a short statement to the manuscript -- please advise if you think it needs changing.

The following data sets were generated

Article and author information

Author details

  1. Philip W Fowler

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    For correspondence
    philip.fowler@ndm.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0912-4483
  2. Carla Wright

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Helen Spiers

    Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Tingting Zhu

    Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisabeth ML Baeten

    Department of Physics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah W Hoosdally

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ana L Gibertoni Cruz

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9473-2215
  8. Aysha Roohi

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Samaneh Kouchaki

    Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Timothy M Walker

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0421-9264
  11. Timothy EA Peto

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Grant Miller

    Department of Physics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Chris Lintott

    Department of Physics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. David Clifton

    Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Derrick W Crook

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0590-2850
  16. A Sarah Walker

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0412-8509
  17. The Zooniverse Volunteer Community

  18. The CRyPTIC Consortium

Funding

Wellcome Trust (200205/Z/15/Z)

  • Philip W Fowler
  • Carla Wright
  • Sarah W Hoosdally
  • Ana L Gibertoni Cruz
  • Aysha Roohi
  • Samaneh Kouchaki
  • Timothy M Walker
  • Timothy EA Peto
  • David Clifton
  • Derrick W Crook
  • A Sarah Walker

Bill and Melinda Gates Foundation (OPP1133541)

  • Philip W Fowler
  • Carla Wright
  • Sarah W Hoosdally
  • Ana L Gibertoni Cruz
  • Aysha Roohi
  • Samaneh Kouchaki
  • Timothy M Walker
  • Timothy EA Peto
  • David Clifton
  • Derrick W Crook
  • A Sarah Walker

Wellcome Trust (203141/Z/16/Z)

  • Philip W Fowler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Version history

  1. Preprint posted: July 21, 2021 (view preprint)
  2. Received: October 28, 2021
  3. Accepted: May 15, 2022
  4. Accepted Manuscript published: May 19, 2022 (version 1)
  5. Accepted Manuscript updated: May 20, 2022 (version 2)
  6. Version of Record published: July 15, 2022 (version 3)

Copyright

© 2022, Fowler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,214
    Page views
  • 252
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philip W Fowler
  2. Carla Wright
  3. Helen Spiers
  4. Tingting Zhu
  5. Elisabeth ML Baeten
  6. Sarah W Hoosdally
  7. Ana L Gibertoni Cruz
  8. Aysha Roohi
  9. Samaneh Kouchaki
  10. Timothy M Walker
  11. Timothy EA Peto
  12. Grant Miller
  13. Chris Lintott
  14. David Clifton
  15. Derrick W Crook
  16. A Sarah Walker
  17. The Zooniverse Volunteer Community
  18. The CRyPTIC Consortium
(2022)
A crowd of BashTheBug volunteers reproducibly and accurately measure the minimum inhibitory concentrations of 13 antitubercular drugs from photographs of 96-well broth microdilution plates
eLife 11:e75046.
https://doi.org/10.7554/eLife.75046

Share this article

https://doi.org/10.7554/eLife.75046

Further reading

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.