Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach

  1. Ali Seleit  Is a corresponding author
  2. Alexander Aulehla
  3. Alexandre Paix  Is a corresponding author
  1. European Molecular Biology Laboratory, Germany

Abstract

The CRISPR/Cas9 system has been used to generate fluorescently labelled fusion proteins by homology directed repair in a variety of species. Despite its revolutionary success, there remains an urgent need for increased simplicity and efficiency of genome editing in research organisms. Here, we establish a simplified, highly efficient and precise strategy for CRISPR/Cas9 mediated endogenous protein tagging in medaka (Oryzias latipes). We use a cloning-free approach that relies on PCR amplified donor fragments containing the fluorescent reporter sequences flanked by short homology arms (30-40bp), a synthetic sgRNA and Cas9 mRNA. We generate eight novel knock-in lines with high efficiency of F0 targeting and germline transmission. Whole Genome Sequencing (WGS) results reveal single-copy integration events only at the targeted loci. We provide an initial characterization of these fusion-protein lines, significantly expanding the repertoire of genetic tools available in medaka. In particular, we show that the mScarlet-pcna line has the potential to serve as an organismal-wide label for proliferative zones and an endogenous cell cycle reporter.

Data availability

Sequencing data have been deposited in European Nucleotide Archive (ENA) under study number ERP127162. Accession numbers are: eGFP-cbx1b(1) ERS5796960 (SAMEA8109891), eGFP-cbx1b(2) ERS5796961 (SAMEA8109892), mScarlet-pcna ERS5796962 (SAMEA8109893) and mNeonGreen-myosinhc ERS5796963 (SAMEA8109894)

The following data sets were generated

Article and author information

Author details

  1. Ali Seleit

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    ali.seleit@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8144-2286
  2. Alexander Aulehla

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3487-9239
  3. Alexandre Paix

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    alexandre.paix@embl.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8080-7546

Funding

H2020 European Research Council (866537)

  • Ali Seleit

EMBL interdisciplinary Postdoc (847543)

  • Ali Seleit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Medaka (Oryzias latipes, Cab strain) (Iwamatsu, 2004, Naruse et al., 2004, Kasahara et al., 2007) were maintained as closed stocks in a fish facility built according to the European Union animal welfare standards and all animal experiments were performed in accordance with European Union animal welfare guidelines. Animal experimentation was approved by The EMBL Institutional Animal Care and Use Committee (IACUC) project code: 20/001_HD_AA. Fishes were maintained in a constant recirculating system at 27-28{degree sign}C with a 14hr light /10hr dark cycle.

Reviewing Editor

  1. Didier YR Stainier true, Max Planck Institute for Heart and Lung Research, Germany

Publication history

  1. Received: October 27, 2021
  2. Accepted: December 5, 2021
  3. Accepted Manuscript published: December 6, 2021 (version 1)
  4. Accepted Manuscript updated: December 8, 2021 (version 2)
  5. Version of Record published: December 21, 2021 (version 3)

Copyright

© 2021, Seleit et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,198
    Page views
  • 516
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali Seleit
  2. Alexander Aulehla
  3. Alexandre Paix
(2021)
Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach
eLife 10:e75050.
https://doi.org/10.7554/eLife.75050

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Feng Xian, Julia Regina Sondermann ... Manuela Schmidt
    Tools and Resources

    The age and sex of studied animals profoundly impact experimental outcomes in biomedical research. However, most preclinical studies in mice use a wide-spanning age range from 4 to 20 weeks and do not assess male and female mice in parallel. This raises concerns regarding reproducibility and neglects potentially relevant age and sex differences, which are largely unknown at the molecular level in naïve mice. Here, we employed an optimized quantitative proteomics workflow in order to deeply profile mouse paw skin and sciatic nerves (SCN) – two tissues implicated in nociception and pain as well as diseases linked to inflammation, injury, and demyelination. Remarkably, we uncovered significant differences when comparing male and female mice at adolescent (4 weeks) and adult (14 weeks) age. Our analysis deciphered protein subsets and networks that were correlated with the age and/or sex of mice. Notably, among these were proteins/biological pathways with known (patho)physiological relevance, e.g., homeostasis and epidermal signaling in skin, and, in SCN, multiple myelin proteins and regulators of neuronal development. Extensive comparisons with available databases revealed that various proteins associated with distinct skin diseases and pain exhibited significant abundance changes in dependence on age and/or sex. Taken together, our study uncovers hitherto unknown sex and age differences at the level of proteins and protein networks. Overall, we provide a unique proteome resource that facilitates mechanistic insights into somatosensory and skin biology, and integrates age and sex as biological variables – a prerequisite for successful preclinical studies in mouse disease models.

    1. Developmental Biology
    2. Immunology and Inflammation
    Tyng-An Zhou, Hsuan-Po Hsu ... Ivan L Dzhagalov
    Research Article

    Tissue-resident macrophages are essential to protect from pathogen invasion and maintain organ homeostasis. The ability of thymic macrophages to engulf apoptotic thymocytes is well appreciated, but little is known about their ontogeny, maintenance, and diversity. Here, we characterized the surface phenotype and transcriptional profile of these cells and defined their expression signature. Thymic macrophages were most closely related to spleen red pulp macrophages and Kupffer cells and shared the expression of the transcription factor SpiC with these cells. Single-cell RNA sequencing showed that the macrophages in the adult thymus are composed of two populations distinguished by the expression of Timd4 and Cx3cr1. Remarkably, Timd4+ cells were located in the cortex, while Cx3cr1+ macrophages were restricted to the medulla and the cortico-medullary junction. Using shield chimeras, transplantation of embryonic thymuses, and genetic fate mapping, we found that the two populations have distinct origins. Timd4+ thymic macrophages are of embryonic origin, while Cx3cr1+ macrophages are derived from adult hematopoietic stem cells. Aging has a profound effect on the macrophages in the thymus. Timd4+ cells underwent gradual attrition, while Cx3cr1+ cells slowly accumulated with age and, in older mice, were the dominant macrophage population in the thymus. Altogether, our work defines the phenotype, origin, and diversity of thymic macrophages.