1. Developmental Biology
Download icon

Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach

  1. Ali Seleit  Is a corresponding author
  2. Alexander Aulehla
  3. Alexandre Paix  Is a corresponding author
  1. European Molecular Biology Laboratory, Germany
Research Article
  • Cited 0
  • Views 2,636
  • Annotations
Cite this article as: eLife 2021;10:e75050 doi: 10.7554/eLife.75050


The CRISPR/Cas9 system has been used to generate fluorescently labelled fusion proteins by homology directed repair in a variety of species. Despite its revolutionary success, there remains an urgent need for increased simplicity and efficiency of genome editing in research organisms. Here, we establish a simplified, highly efficient and precise strategy for CRISPR/Cas9 mediated endogenous protein tagging in medaka (Oryzias latipes). We use a cloning-free approach that relies on PCR amplified donor fragments containing the fluorescent reporter sequences flanked by short homology arms (30-40bp), a synthetic sgRNA and Cas9 mRNA. We generate eight novel knock-in lines with high efficiency of F0 targeting and germline transmission. Whole Genome Sequencing (WGS) results reveal single-copy integration events only at the targeted loci. We provide an initial characterization of these fusion-protein lines, significantly expanding the repertoire of genetic tools available in medaka. In particular, we show that the mScarlet-pcna line has the potential to serve as an organismal-wide label for proliferative zones and an endogenous cell cycle reporter.

Data availability

Sequencing data have been deposited in European Nucleotide Archive (ENA) under study number ERP127162. Accession numbers are: eGFP-cbx1b(1) ERS5796960 (SAMEA8109891), eGFP-cbx1b(2) ERS5796961 (SAMEA8109892), mScarlet-pcna ERS5796962 (SAMEA8109893) and mNeonGreen-myosinhc ERS5796963 (SAMEA8109894)

The following data sets were generated

Article and author information

Author details

  1. Ali Seleit

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8144-2286
  2. Alexander Aulehla

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3487-9239
  3. Alexandre Paix

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8080-7546


H2020 European Research Council (866537)

  • Ali Seleit
  • Alexander Aulehla

EMBL interdisciplinary Postdoc (847543)

  • Ali Seleit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: Medaka (Oryzias latipes, Cab strain) (Iwamatsu, 2004, Naruse et al., 2004, Kasahara et al., 2007) were maintained as closed stocks in a fish facility built according to the European Union animal welfare standards and all animal experiments were performed in accordance with European Union animal welfare guidelines. Animal experimentation was approved by The EMBL Institutional Animal Care and Use Committee (IACUC) project code: 20/001_HD_AA. Fishes were maintained in a constant recirculating system at 27-28{degree sign}C with a 14hr light /10hr dark cycle.

Reviewing Editor

  1. Didier YR Stainier true, Max Planck Institute for Heart and Lung Research, Germany

Publication history

  1. Received: October 27, 2021
  2. Accepted: December 5, 2021
  3. Accepted Manuscript published: December 6, 2021 (version 1)
  4. Accepted Manuscript updated: December 8, 2021 (version 2)
  5. Version of Record published: December 21, 2021 (version 3)


© 2021, Seleit et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,636
    Page views
  • 306
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    David J Turner et al.
    Short Report Updated

    To identify roles of RNA binding proteins (RBPs) in the differentiation or survival of antibody secreting plasma cells we performed a CRISPR/Cas9 knockout screen of 1213 mouse RBPs for their ability to affect proliferation and/or survival, and the abundance of differentiated CD138 + cells in vitro. We validated the binding partners CSDE1 and STRAP as well as the m6A binding protein YTHDF2 as promoting the accumulation of CD138 + cells in vitro. We validated the EIF3 subunits EIF3K and EIF3L and components of the CCR4-NOT complex as inhibitors of CD138 + cell accumulation in vitro. In chimeric mouse models YTHDF2-deficient plasma cells failed to accumulate.

    1. Computational and Systems Biology
    2. Developmental Biology
    Kyoung Jo et al.
    Research Article Updated

    Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood because of the inaccessibility of the early postimplantation human embryo for study. Here, we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96 hr and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for Nodal signaling and find that the relative timing and duration of BMP and Nodal signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by Nodal and BMP signaling, which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation.