Cryo-sensitive aggregation triggers NLRP3 inflammasome assembly in cryopyrin-associated periodic syndrome

  1. Tadayoshi Karasawa  Is a corresponding author
  2. Takanori Komada
  3. Naoya Yamada
  4. Emi Aizawa
  5. Yoshiko Mizushina
  6. Sachiko Watanabe
  7. Chintogtokh Baatarjav
  8. Takayoshi Matsumura
  9. Masafumi Takahashi  Is a corresponding author
  1. Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Japan
9 figures, 2 videos, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
Cryopyrin-associated periodic syndrome-associated NLRP3 mutants form cryo-sensitive foci.

(A) EF1-NLRP3-WT-, NLRP3-L353P-, or NLRP3-D303N-mNeonGreen-HeLa cells or EF1-ASC-GFP-HeLa cells were analyzed by confocal microscopy. Line profiles of foci or specks in the images were analyzed. (B and C) ASC KO/EF1-NLRP3-WT- or NLRP3-D303N-mNeonGreen-THP-1 cells were differentiated with 200 nM phorbol-12-myristate-13-acetate for 24 hr and then treated with nigericin for 6 hr. (B) Representative images by confocal microscopy. (C) The number of foci was counted by high-content analysis. (D–F) Differentiated ASC KO/EF1-NLRP3-WT-, NLRP3-L353P-, or NLRP3-D303N-mNeonGreen-THP-1 cells were cultured at 37 or 32°C for 24 hr. (G–I) EF1-NLRP3-WT-, NLRP3-L353P-, NLRP3-D303N-, NLRP3-Y563N-, or NLRP3-Y570C-mNeonGreen-HeLa cells were cultured at 37 or 32°C for 24 hr. (D and G) Representative images by confocal microscopy. (E, F, H, and I) The number of foci and the fluorescence intensity of the cells were analyzed by high-content analysis. Pearson correlation coefficients are shown. (J) EF1-ASC-GFP-HeLa cells were cultured at 37 or 32°C for 24 hr. The number of nuclei and speck was counted. (C, F, I, and J) Data are expressed as the mean ± SD. ***p<0.005 as determined by two-way ANOVA with a post hoc test. Data are representative of three independent experiments. WT, wild type.

Figure 1—figure supplement 1
Expression of NLRP3-mNeonGreen and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-GFP.

(A) Amino acid sequence of chronic infantile neurological, cutaneous, and articular syndrome (CINCA)-associated D303N mutant and familial cold autoinflammatory syndrome (FCAS)-associated L353P mutant. (B) Lysates of EF1-NLRP3-WT-, NLRP3-L353P-, NLRP3-D303N, NLRP3-Y563N, or NLRP3-Y570C-mNeonGreen-HeLa cells were analyzed by western blot. (C) EF1-NLRP3-WT-, NLRP3-Y563N-, or NLRP3-Y570C-mNeonGreen-HeLa cells were analyzed by confocal microscopy. (D–G) EF1-NLRP3-WT-, NLRP3-L353P-, NLRP3-D303N-, NLRP3-Y563N-, or NLRP3-Y570C-mNeonGreen-HeLa cells were cultured at 37 or 32°C for 24 hr. The number and area of the foci, and the fluorescence intensity of the cells were analyzed by high-content analysis. (D) The histogram of foci number in foci-positive cells. (E) The scatter plot of relative fluorescence intensity and foci number in each group. (F) Relative foci area per cell and (G) average foci area were quantified. (H) EF1-ASC-GFP-HeLa cells were cultured at 37 or 32°C for 24 hr. Representative image of confocal microscopy. (F and G) Data are expressed as the mean ± SD. ***p<0.005 as determined by two-way ANOVA with a post hoc test. Data are representative of two or three independent experiments. WT, wild type.

Figure 2 with 2 supplements
Cryopyrin-associated periodic syndrome-associated NLRP3 mutants form aggregates.

(A–F) EF1-NLRP3-L353P-mNeonGreen- or EF1-ASC-GFP-HeLa cells were cultured at 32°C for 24 hr. Foci or specks in the cells were analyzed by fluorescence recovery after photobleaching. Representative images of (A) foci formed by NLRP3-L353P-mNeonGreen or (C) specks formed by apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-GFP before and after photobleaching. The bleached and unbleached areas are shown in black lines and yellow lines, respectively. Plots of relative fluorescence units during photobleaching of (B and E) NLRP3-L353Pm-NeonGreen (n=12) and (D and F) ASC specks (n=12). (B and D) The red line represents mean values, and the gray lines represent each measurement. (E and F) Data are expressed as the mean ± SD. ***p<0.005 as determined by two-way ANOVA with a post hoc test. Data are from three independent live-cell imaging.

Figure 2—figure supplement 1
Domains composing NLRP3.

(A) IUPred score of NLRP3 and domains in human NLRP3. PYD, pyrin domain; FISNA, fish-specific NACHT associated domain; NACHT, NACHT domain; WH, winged helix domain; HD, helical domain; LRR, leucine rich repeat.

Figure 2—figure supplement 2
Cryopyrin-associated periodic syndrome-associated NLRP3 mutants form aggregates.

(A–D) EF1-NLRP3-L353P-, or NLRP3-D303N-mNeonGreen-HeLa cells were cultured at 32°C for 24 hr. Foci in the cells were analyzed by fluorescence recovery after photobleaching (FRAP). Representative images of foci formed (A) by NLRP3-D303N-mNeonGreen or (C) by NLRP3-L353P-mNeonGreen before and after photobleaching. The bleached area and unbleached area are shown in black lines and yellow lines, respectively. Plot of relative fluorescence unit during photobleaching of (B) NLRP3-D303N-mNeonGreen (n=7) and (D) NLRP3-L353P-mNeonGreen (n=10). The red line represents the mean value, and the gray lines represent each measurement. Data are from two or three independent live-cell imaging. (E and F) mNeonGreen-HeLa cells were analyzed by FRAP. (E) Representative images of mNeonGreen before and after photobleaching. The targeted area is shown by black circle. (F) Plot of relative fluorescence unit during photobleaching of mNeonGreen (n=10). The red line represents the mean value, and the gray lines represent each measurement. (G) EF1-NLRP3-L353P- or NLRP3-D303N-mNeonGreen-HeLa cells were treated with 5% 1,6-hexanediol for 30 min. Representative images of live-cell imaging.

Figure 3 with 1 supplement
Aggregates formed by cryopyrin-associated periodic syndrome-associated NLRP3 mutant are the scaffold for inflammasome activation.

(A–C) EF1-ASC-BFP/TRE-NLRP3-WT or L353P-mNeonGreen-THP-1 cells were treated with doxycycline (DOX). (A) Localization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and NLRP3 was analyzed by confocal microscopy. (B) The number of foci was counted. (C) The ASC-speck number in NLRP3 foci was analyzed. (D and E) TRE-NLRP3-L353P-THP-1 cells were differentiated with phorbol-12-myristate-13-acetate (PMA) for 24 hr and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. (D) Triton X-soluble and triton X-insoluble fractions were analyzed by western blot. (E) Oligomerized ASC in Triton X-insoluble fractions was crosslinked with bis(sulfosuccinimidyl)suberate (BS3) and analyzed by western blot. (F) Differentiated TRE-NLRP3-L353P-THP-1 cells were treated with nigericin at 37 or 32°C for 6 hr. Triton X-insoluble fractions were crosslinked with BS3 and analyzed by western blot. (G) EF-1-ASC-GFP/TRE-NLRP3-L353P-THP-1 cells were differentiated with PMA for 24 hr and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. Representative images by confocal microscopy and the number of nuclei and specks were counted. (H) Differentiated TRE-NLRP3-L353P-THP-1 cells were treated with DOX at 37 or 32°C for 6 hr. The IL-1β levels in the supernatants were assessed by ELISA (n=3). (B, C and H) Data are expressed as the mean ± SD. **p<0.01 and ***p<0.005 as determined by (B, C, and H) two-way ANOVA with a post hoc test or (G) Fisher’s exact test with the Holm correction. Data are representative of two or three independent experiments.

Figure 3—figure supplement 1
Cold exposure enhances IL-1β release in NLRP3 familial cold autoinflammatory syndrome mutant-expressing cells.

(A) TRE-NLRP3-L353P- or (B and E) NLRP3-D303N- or (C) ASC KO/TRE-NLRP3-L353P- or (F and G) NLRP3WT-THP-1 cells were differentiated with phorbol-12-myristate-13-acetate for 24 hr and then treated with doxycycline (DOX) at 37 or 32°C for 6 hr. (D) Differentiated TRE-NLRP3-L353P-THP-1 cells were treated with 5 µM nigericin or nanosilica (30 µg/mL) at 37 or 32°C for 6 hr. (A, B, C, and F) Lysates and supernatants were analyzed by western blot. (D, E, and G) The levels of IL-1β in the supernatants were assessed by ELISA (n=3). Data are expressed as the mean ± SD. *p<0.05, **p<0.01, and ***p<0.005 as determined by two-way ANOVA with a post hoc test. Data are representative of two or three independent experiments.

Figure 4 with 1 supplement
NEK7 and polybasic linker in NLRP3 are dispensable for cryopyrin-associated periodic syndrome-associated NLRP3 mutant-mediated inflammasome assembly.

(A and B) Differentiated NEK7-mutated TRE-NLRP3-L353P-THP-1 cells were treated with (A) doxycycline (DOX) (30 ng/mL) or (B) nigericin at 37 or 32°C for 6 hr. The levels of IL-1β in the supernatants were assessed by ELISA (n=3). (C) EF1-NLRP3-L353P-, NLRP3-L353P3KA-, EF1-NLRP3-D303N-, or NLRP3-D303N3KA-mNeonGreen-HeLa cells were analyzed by confocal microscopy. (D and E) EF1-NLRP3-L353P-, NLRP3-L353P-linker mutant-, EF1-NLRP3-D303N-, or NLRP3-D303N-linker mutant-mNeonGreen-HeLa cells were cultured at 37 or 32°C for 24 hr. The number of foci and the fluorescence intensity of the cells were analyzed by high-content analysis. Data are expressed as the mean ± SD. ***p<0.005 as determined by two-way ANOVA with a post hoc test. Data are representative of three independent experiments.

Figure 4—figure supplement 1
K+ efflux is dispensable for inflammasome activation induced by cryopyrin-associated periodic syndrome-associated NLRP3 mutant.

(A) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with the indicated dose of KCl or NaCl and then treated with doxycycline (DOX) (30 ng/mL) at 37 or 32°C for 6 hr. (B–D) NEK7-mutated (B and C) TRE-NLRP3-L353P-THP-1 cells or (D) TRE-NLRP3-D303N-THP-1 cells were differentiated with phorbol-12-myristate-13-acetate for 24 hr. (B and D) mRNA expression of NEK7 was analyzed by real-time PCR (n=3). (C) Lysates were analyzed by western blot. (E) Differentiated NEK7-mutated TRE-NLRP3-D303N-THP-1 cells were treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. The levels of IL-1β in the supernatants were assessed by ELISA (n=3). (F) Lysates of EF1-NLRP3-L353P-, NLRP3-L353P-linker mutant-, NLRP3-D303N, or NLRP3-D303N-linker mutant-mNeonGreen-HeLa cells were analyzed by western blot. (A, B, D, and E) Data are expressed as the mean ± SD. *p<0.05, **<0.01, and ***p<0.005 as determined by (B and D) one-way or (A and E) two-way ANOVA with a post hoc test. Data are representative of two independent experiments.

Figure 5 with 2 supplements
Ca2+ is required for cryopyrin-associated periodic syndrome-associated NLRP3 mutant-mediated inflammasome assembly.

(A–C) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with indicated conditions, and then treated with doxycycline (DOX) (30 ng/mL) at 37 or 32°C for 6 hr. (A and B) The IL-1β levels in the supernatants were assessed by ELISA (n=3). (C) Oligomerized apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in Triton X-insoluble fractions was crosslinked with bis(sulfosuccinimidyl)suberate and analyzed by western blot. (D) EF1-ASC-GFP/TRE-NLRP3-L353P-THP-1 cells were pretreated with Ca2+-depleted or -supplemented media and then treated with DOX (30 ng/mL) at 37°C. ASC-speck formation was analyzed by confocal microscopy. (E and F) ASC KO / EF1-NLRP3-WT- or L353P- mNeonGreen-THP-1 cells were cultured at 37 or 32°C for 24 hr in Ca2+-depleted or -supplemented media. The number of foci and fluorescent intensity was analyzed by high-content analysis. (G and H) Differentiated EF1-ASC-BFP/TRE-NLRP3-L353P-mNeonGreen THP-1 cells were pretreated with Ca2+-depleted or -supplemented media and then treated with DOX (30 ng/mL) at 37°C. (G) Representative images by confocal microscopy. (H) The number of foci was analyzed by high-content analysis. (A, B, F, and G) Data are expressed as the mean ± SD. *p<0.05, **p<0.01, and ***p<0.005 as determined by (A, B, E, and H) two-way ANOVA with a post hoc test or (D) Fisher’s exact test with the Holm correction. Data are representative of two or three independent experiments.

Figure 5—figure supplement 1
Ca2+ is necessary for inflammasome activation induced by cryopyrin-associated periodic syndrome-associated NLRP3 mutant.

(A and B) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with the indicated inhibitors and then treated with doxycycline (DOX) (30 ng/mL) or nigericin (5 µM) at 37 or 32°C for 6 hr. The levels of IL-1β in the supernatants were assessed by ELISA (n=3). (C) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with EGTA and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. Lysates and supernatants were analyzed by western blot. (D) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with Ca2+-depleted or -supplemented media and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. Oligomerized apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in Triton X-insoluble fractions was crosslinked by bis(sulfosuccinimidyl)suberate and analyzed by western blot. (E) EF1-ASC-GFP/TRE-NLRP3-L353P-THP-1 cells were pretreated with EGTA and then treated with DOX (30 ng/mL) at 37°C. The formation of ASC speck was analyzed by high-content analysis. (F) Differentiated TRE-NLRP3-D303N-THP-1 cells were pretreated with EGTA and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. The IL-1β levels in the supernatants were assessed by ELISA (n=3). (A, B, E, and F) Data are expressed as the mean ± SD. *p<0.05, **p<0.01, and ***p<0.005 as determined by two-way ANOVA with a post hoc test. Data are representative of two or three independent experiments.

Figure 5—figure supplement 2
Ca2+ is necessary for aggregation of cryopyrin-associated periodic syndrome-associated NLRP3 mutant.

(A) ASC KO/EF1-NLRP3-L353P-mNeonGreen-THP-1 cells were cultured at 37 or 32°C for 24 hr in Ca2+-depleted media. The number of foci and fluorescent intensity was analyzed by high-content analysis. (B and C) ASC KO/EF1-NLRP3-D303N-mNeonGreen-THP-1 cells were cultured at 37 or 32°C for 24 hr in Ca2+-depleted or -supplemented media. The number of foci and fluorescent intensity was analyzed by high-content analysis. Data are expressed as the mean ± SD. **p<0.01 and ***p<0.005 as determined by Welch’s t test or two-way ANOVA with a post hoc test. Data are representative of three independent experiments.

Figure 6 with 2 supplements
Ca2+ influx is provoked during mutated NLRP3-mediated inflammasome assembly.

(A–C) Differentiated TRE-NLRP3-L353P-THP-1 cells were loaded with 4 µM Fluo-8 for 1 hr and treated with doxycycline (DOX) (30 ng/mL) at 37°C for 6 hr. The images were recorded by confocal microscopy at 5 min intervals from 3 hr to 6 hr. (A) Representative temporal subtraction images. (B) The frequency of intracellular Ca2+ increase at each time point. (C) The cumulative number of Fluo-8-positive cells. (D–F) Differentiated TRE-NLRP3-L353P-THP-1 cells were loaded with 4 µM Fluo-8 for 1 hr and treated with DOX (30 ng/mL) at 37°C for 6 hr in Ca2+-depleted or -supplemented media. The images were recorded by confocal microscopy at 5 min intervals from 3 hr to 6 hr. (D) Representative temporal subtraction images. (E) The frequency of intracellular Ca2+ increase at each time point. (F) The cumulative number of Fluo-8-positive cells. (G–I) Differentiated EF1-ASC-BFP/TRE-NLRP3-L353P-THP-1 cells were loaded with 4 µM Fluo-8 for 1 hr and treated with DOX (30 ng/mL) at 37°C. The images were recorded at 5 min intervals. (G) Representative images of the cells with increased Fluo-8 signals. (H) The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-BFP speck size (I) and fluorescent intensity of Fluo-8 were analyzed. The peak time point of Fluo-8 signals was defined as 0 min. (H) The blue line and the (I) green line represent mean values, and the gray line represents each measurement. *p<0.05, **p<0.01, and ***p<0.005 as determined by (C and F) Fisher’s exact test with the Holm correction or (H and I) repeated one-way ANOVA with a post hoc test. (A–G) Data are representative of three independent experiments. (H and I) Data are from three independent live-cell imaging.

Figure 6—figure supplement 1
Ca2+ influx is induced by chronic infantile neurological, cutaneous, and articular syndrome-associated NLRP3 mutant.

(A–C) Differentiated TRE-NLRP3-D303N-THP-1 cells were loaded with 4 µM Fluo-8 for 1 hr and treated with doxycycline (DOX) (30 ng/mL) at 37°C for 6 hr. The images were recorded by confocal microscopy at 5 min intervals from 3 hr to 6 hr. (A) Representative temporal subtraction images. (B) The frequency of intracellular Ca2+ increase at each time point. (C) The cumulative number of Fluo-8-positive cells. ***p<0.005 as determined by Fisher’s exact test with the Holm correction. Data are representative of three independent experiments.

Figure 6—figure supplement 2
Pyroptosis is induced by mutated NLRP3 after Ca2+ influx.

(A and B) Differentiated TRE-NLRP3-L353P-THP-1 cells were loaded with 4 µM Fluo-8 for 1 hr and treated with doxycycline (DOX) (30 ng/mL) at 37°C for 6 hr. (A) Representative images of cells with increased Fluo-8 signal. (B) The relative fluorescent intensity of Fluo-8 and Kusabira Orange in cells with increased Fluo-8 signal was quantified (n=10). (C and D) Differentiated TRE-NLRP3-L353P-THP-1 cells were loaded with 4 µM Fluo-8 for 1 hr and treated with DOX (30 ng/mL) at 37°C for 6 hr in the presence of SYTOX Deep Red. (C) Representative images of cells with increased Fluo-8 signal. (D) The relative fluorescent intensity of Fluo-8 and SYTOX Deep Red in cells with increased Fluo-8 signal was quantified (n=5). Data are expressed as the mean ± SD. *p<0.05 as determined by repeated one-way ANOVA with a post hoc test. Data are analyzed from two independent time-lapse imaging.

Figure 7 with 1 supplement
Caspase-1 inhibition prevents familial cold autoinflammatory syndrome-associated NLRP3 mutant-mediated inflammasome assembly.

(A –C) Differentiated TRE-NLRP3-L353P-THP-1 cells were loaded with 4 µM Fluo-8 for 1 hr and were pretreated with VX-765 (20 µM) for 30 min. After doxycycline (DOX) (30 ng/mL) treatment, the images were recorded at 5 min intervals from 3 hr to 6 hr. (A) Representative temporal subtraction images. (B) The frequency of intracellular Ca2+ increase at each time point. (C) The cumulative number of Fluo-8-positive cells. (D and F) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with VX-765 (20 µM) for 30 min and then treated with DOX (30 ng/mL) or nigericin (5 µM) at 37 or 32°C. (D) Triton X-insoluble fractions were crosslinked with bis(sulfosuccinimidyl)suberate and analyzed by western blot. (F) The IL-1β levels in the supernatants were assessed by ELISA (n=3). (E) EF1-ASC-GFP/TRE-NLRP3-L353P-THP-1 cells were pretreated with 20 µM VX-765 for 30 min and then treated with DOX (30 ng/mL) at 37°C. ASC-speck formation was analyzed by confocal microscopy. (G and H) The differentiated CASP1-mutated TRE-NLRP3-L353P-THP-1 cells were treated with 4 µM Fluo-8 for 1 hr and treated with DOX (30 ng/mL) at 37°C for 6 hr. (G) The frequency of intracellular Ca2+ increase at each time point. (H) The cumulative number of Fluo-8-positive cells. (I) The differentiated CASP1-mutated EF1-ASC-GFP/TRE-NLRP3-L353P-THP-1 cells were treated with DOX (30 ng/mL) at 37°C for 6 hr. ASC-speck formation was analyzed by confocal microscopy. (F) Data are expressed as the mean ± SD. *p<0.05, **p<0.01, and ***p<0.005 as determined by (C, E, G, and H) Fisher’s exact test with the Holm correction or (F) two-way ANOVA with a post hoc test. Data are representative of two or three independent experiments.

Figure 7—figure supplement 1
Caspase activity is required for inflammasome assembly induced by familial cold autoinflammatory syndrome-associated NLRP3 mutant.

(A and B) Differentiated NLRP3-L353P-THP-1 cells were loaded with 3 µM Fura2 for 1 hr. Cells were pretreated 20 µM VX-765 for 30 min and then treated with doxycycline (DOX) (30 ng/mL) at 37 or 32°C for 6 hr. Fluorescence (A) at 37 and (B) 32°C was measured at hourly interval (n=6). (C) Differentiated TRE-NLRP3-D303N-THP-1 cells were pretreated with VX-765 for 30 min and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. The IL-1β levels in the supernatants were assessed by ELISA (n=3). (D) The differentiated CASP1-mutated TRE-NLRP3-L353P-THP-1 cells were treated with DOX (30 ng/mL) at 37°C for 6 hr. Lysates were analyzed by western blot. (C) Data are expressed as the mean ± SD. ***p<0.005 as determined by two-way ANOVA with a post hoc test. Data are representative of two or three independent experiments.

Figure 8 with 1 supplement
Pannexin 1 inhibition prevents familial cold autoinflammatory syndrome-associated NLRP3 mutant-mediated inflammasome assembly.

(A and B) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with 4 µM Fluo-8 for 1 hr and trovafloxacin (20 µM) for 30 min. After doxycycline (DOX) (30 ng/mL) treatment, the images were recorded at 5 min intervals from 3 hr to 6 hr. (A) The frequency of intracellular Ca2+ increase at each time point. (B) The cumulative number of Fluo-8-positive cells. (C–F) EF1-ASC-GFP/TRE-NLRP3-L353P-THP-1 cells were pretreated with (C and D) trovafloxacin (20 µM) or (E and F) probenecid (1 mM) for 30 min and then treated with DOX (30 ng/mL) at 37°C for 6 hr. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-speck formation was analyzed by confocal microscopy. (C and E) Representative images by confocal microscopy. (D and F) The number of nuclei and specks was counted. (G – I) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with (G) trovafloxacin, (H) probenecid, or (I) MCC950 for 30 min and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. The IL-1β levels in the supernatants were assessed by ELISA (n=3). (J) EF1-ASC-GFP/TRE-NLRP3-L353P-THP-1 cells were pretreated with MCC950 and then treated with DOX (30 ng/mL) at 37°C. The formation of ASC speck was analyzed by high-content analysis. (G–J) Data are expressed as the mean ± SD. **p<0.01 and ***p<0.005 as determined by (G–J) two-way ANOVA with a post hoc test or (B, D, and F) Fisher’s exact test with the Holm correction. Data are representative of three independent experiments.

Figure 8—figure supplement 1
Pannexin 1 inhibition prevents familial cold autoinflammatory syndrome-associated NLRP3 mutant-mediated inflammasome assembly.

(A and B) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with 4 µM Fluo-8 for 1 hr and then treated with doxycycline (DOX) (30 ng/mL) at 37°C for 6 hr. The images were recorded by confocal microscopy at 5 min intervals from 3 hr to 6 hr. (A) The frequency of intracellular Ca2+ increase at each time point. (B) The cumulative number of Fluo-8-positive cells. (C and D) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with 4 µM Fluo-8 for 1 hr and VX-765 (20 µM) for 30 min. After DOX (30 ng/mL) treatment, the images were recorded at 5 min intervals from 3 hr to 6 hr. (C) The frequency of intracellular Ca2+ increase at each time point. (D) The cumulative number of Fluo-8-positive cells. (E, F, H) Differentiated TRE-NLRP3-L353P-THP-1 cells were pretreated with (E) trovafloxacin, (F) probenecid, or (H) MCC950 for 30 min and then treated with nigericin (5 µM) at 37°C for 6 hr. The levels of IL-1β in the supernatants were assessed by ELISA (n=3). (G) Differentiated TRE-NLRP3-D303N-THP-1 cells were pretreated with probenecid for 30 min and then treated with DOX (30 ng/mL) at 37 or 32°C for 6 hr. The IL-1β levels in the supernatants were assessed by ELISA (n=3). (E–H) Data are expressed as the mean ± SD. ***p<0.005 as determined by two-way ANOVA with a post hoc test or (B, D) Fisher’s exact test with the Holm correction. Data are representative of three independent experiments.

Author response image 1
The effect of imiquimod on IL-1β release in THP-1 cells.

THP-1 cells were differentiated with PMA for 24 h and then treated with nigericin, imiquimod, or nanosilica at 37ºC or 32ºC for 6 h. The levels of IL-1β in the supernatants were assessed by ELISA (n = 3). Data are expressed as the mean ± SD.

Videos

Video 1
Ca2+ influx is induced by familial cold autoinflammatory syndrome-associated NLRP3 mutant.

Differentiated TRE-NLRP3-L353P-THP-1 cells were loaded with 4 μM Fluo-8 for 1 hr and treated with doxycycline (30 ng/mL) at 37°C for 6 hr in Ca2+-depleted or -supplemented media. The images were recorded by confocal microscopy at 5 min intervals from 3 hr to 6 hr.

Video 2
Caspase activity is required for Ca2+ influx induced by familial cold autoinflammatory syndrome-associated NLRP3 mutant.

Differentiated TRE-NLRP3-L353P-THP-1 cells were loaded with 4 μM Fluo-8 for 1 hr and were pretreated with VX-765 (20 μM) for 30 min. After doxycycline (30 ng/mL) treatment, the images were recorded at 5 min intervals from 3 hr to 6 hr.

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Cell line (Homo sapiens)LentiX293TTakara BioZ2180N
Cell line (H. sapiens)HeLaGift from Dr. Kenji TagoN/A
Cell line (H. sapiens)EF1-NLRP3-WT-mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-L353P-mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-D303N-mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-Y563N-mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-Y570C-mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-L353P-linker-mutant-mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-D303N-linker-mutant--mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-mNeonGreen-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-ASC-GFP-HeLaThis manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)THP-1ATCCTIB-202
Cell line (H. sapiens)ASC KO THP-1Aizawa et al., 2020N/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-WT-mNeonGreen/ASC KO THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-L353P-mNeonGreen/ASC KO THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-NLRP3-D303N-mNeonGreen/ASC KO THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)TRE-NLRP3-WT-THP-1This manuscriptN/AProduced by lentiviral transduction and limiting dilution
Cell line (H. sapiens)TRE-NLRP3-L353P-THP-1This manuscriptN/AProduced by lentiviral transduction and limiting dilution
Cell line (H. sapiens)TRE-NLRP3-L353P/ASC KO THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)TRE-NLRP3-L353P/NEK7 KO THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)TRE-NLRP3-L353P/CASP1 KO THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)TRE-NLRP3-D303N-THP-1Aizawa et al., 2020N/AProduced by lentiviral transduction and limiting dilution
Cell line (H. sapiens)TRE-NLRP3-D303N/ASC KO THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-ASC-GFP/TRE-NLRP3-L353P-THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-ASC-BFP/TRE-NLRP3-L353P-THP-1This manuscriptN/AProduced by lentiviral transduction
Cell line (H. sapiens)EF1-ASC-BFP/TRE-NLRP3-WT-mNeonGreen-THP-1This manuscriptN/AProduced by lentiviral transduction
Sequence-based reagentsgRNA sequence for GFPAizawa et al., 2020N/AGAGCTGGACG
GCGACGTAAA
Sequence-based reagentsgRNA sequence for apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)Aizawa et al., 2020N/ACAGCACGTTA
GCGGTGAGCT
Sequence-based reagentsgRNA sequence for NEK7#1This manuscriptN/AATTACAGAAG
GCCTTACGAC
Sequence-based reagentsgRNA sequence for NEK7#2This manuscriptN/AATAGCCCATA
TCCGGTCGTA
Sequence-based reagentsgRNA sequence for CASP1Aizawa et al., 2020N/AAAGCTGTTTA
TCCGTTCCAT
Recombinant DNA reagentCSCAMCSRIKEN BRCRDB05963Lentiviral vector for stable gene expression
Recombinant DNA reagentCSIV-TRE-RfA-CMV-KTRIKEN BRCRDB12876Lentiviral vector for inducible gene expression
Recombinant DNA reagentLentiCRISPRv2Addgene#52,961Lentiviral vector expressing sgRNA
Transfected construct (H. sapiens)CSEF1-NLRP3-WT-mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-NLRP3-L353P-mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-NLRP3-D303N-mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-NLRP3-Y563N-mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-NLRP3-Y570C-mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-NLRP3-L353P-linker-mutant-mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-NLRP3-D303N-linker-mutant -mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-mNeonGreenThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-ASC-GFPThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSEF1-ASC-BFPThis manuscriptN/ALentiviral vector for stable gene expression
Transfected construct (H. sapiens)CSIV-TRE-NLRP3-WT-CMV-KTThis manuscriptN/ALentiviral vector for inducible gene expression
Transfected construct (H. sapiens)CSIV-TRE-NLRP3-L353P-CMV-KTThis manuscriptN/ALentiviral vector for inducible gene expression
Transfected construct (H. sapiens)CSIV-TRE-NLRP3-D303N-CMV-KTAizawa et al., 2020N/ALentiviral vector for inducible gene expression
Transfected construct (H. sapiens)CSIV-TRE-NLRP3-WT-mNeonGreen-CMV-KTThis manuscriptN/ALentiviral vector for inducible gene expression
Transfected construct (H. sapiens)CSIV-TRE-NLRP3-L353P-mNeonGreen -CMV-KTThis manuscriptN/ALentiviral vector for inducible gene expression
Transfected construct
(H. sapiens)
LentiCRISPRv2 sgGFPAizawa et al., 2020N/ALentiviral vector expressing sgRNA
 Transfected construct (H. sapiens)LentiCRISPRv2 sgASCAizawa et al., 2020N/ALentiviral vector expressing sgRNA
 Transfected construct (H. sapiens)LentiCRISPRv2 sgNEK7This manuscriptN/ALentiviral vector expressing sgRNA
 Transfected construct (H. sapiens)LentiCRISPRv2 sgCASP1Aizawa et al., 2020N/ALentiviral vector expressing sgRNA
AntibodyRabbit polyclonal anti-NEK7AbcamEPR4900WB (1:1000)
AntibodyMouse monoclonal anti-NLRP3AdipogenAG-20B-0014WB (1:2000)
AntibodyRabbit polyclonal anti-ASCAdipogenAG-25B-0006WB (1:2000)
AntibodyRabbit monoclonal anti-caspase-1 (D7F10)Cell Signaling Technology#3,866WB (1:1000)
AntibodyRabbit polyclonal anti-IL-1βSanta Cruzsc-7884WB (1:1000)
AntibodyMouse monoclonal anti-β-actinSigma-AldrichA5441WB (1:4000)
Commercial assay or kitLentiviral qPCR Titration KitApplied Biological Materials#LV900
Commercial assay or kitHuman IL-1 beta/IL-1F2 DuoSet ELISAR&D SystemsDY201
Commercial assay or kitSuper Script VILO cDNA Synthesis kitThermo Fisher Scientific
Chemical compound, drugMCC950AdipoGenAG-CR1-3615-M005
Chemical compound, drugDRAQ5Biolegend424,1011 µM
Chemical compound, drugProbenecidCayman14,981
Chemical compound, drugTrovafloxacin mesylateCayman9000303
Chemical compound, drug4',6-diamidino-2-phenylindole, dihydrochlorideDOJINDOD5231 µg/mL
Chemical compound, drugFura-2/AMDOJINDOF0153 µM
Chemical compound, drugHoechst33342DOJINDOH3421 µg/mL
Chemical compound, drugPEI MAXPolyscience24765–1
Chemical compound, drugVX-765SelleckS2228
Chemical compound, drugPluronic F127Sigma-AldrichP24430.04%
Chemical compound, drugPuromycinSigma-AldrichP88332 µg/mL
Chemical compound, drugFluo-8Santa CruzSc-3625624 µM
Chemical compound, drugBis(sulfosuccinimidyl)suberateThermo Fisher Scientific21,5802 mM
Chemical compound, drugSYTOX Deep RedThermo Fisher ScientificS11380100 nM
Chemical compound, drugDoxycycline Hydrochloride n-HydrateWako049–31121
Chemical compound, drugPhorbol 12-Myristate 13-AcetateWako162–23591200 nM
Software, algorithmGraphPad Prism 6Graph Pad SoftwareRRID:
SCR_002798
Software, algorithmImageJ/FIJI (2.1.0/1.53 c)Schindelin et al., 2012RRID:
SCR_002285
Software, algorithmIUpred2AMészáros et al., 2018RRID:
SCR_014632
Software, algorithmR version 4.0.2R projectRRID:
SCR_001905

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tadayoshi Karasawa
  2. Takanori Komada
  3. Naoya Yamada
  4. Emi Aizawa
  5. Yoshiko Mizushina
  6. Sachiko Watanabe
  7. Chintogtokh Baatarjav
  8. Takayoshi Matsumura
  9. Masafumi Takahashi
(2022)
Cryo-sensitive aggregation triggers NLRP3 inflammasome assembly in cryopyrin-associated periodic syndrome
eLife 11:e75166.
https://doi.org/10.7554/eLife.75166