Abstract

Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory syndrome caused by mutations of NLRP3 gene encoding cryopyrin. Familial cold autoinflammatory syndrome (FCAS), the mildest form of CAPS, is characterized by cold-induced inflammation induced by the overproduction of IL-1β. However, the molecular mechanism of how mutated NLRP3 causes inflammasome activation in CAPS remains unclear. Here, we found that CAPS-associated NLRP3 mutants form cryo-sensitive aggregates that function as a scaffold for inflammasome activation. Cold exposure promoted inflammasome assembly and subsequent IL-1β release triggered by mutated NLRP3. While K+ efflux was dispensable, Ca2+ was necessary for mutated NLRP3-mediated inflammasome assembly. Notably, Ca2+ influx was induced during mutated NLRP3-mediated inflammasome assembly. Furthermore, caspase-1 inhibition prevented Ca2+ influx and inflammasome assembly induced by the mutated NLRP3, suggesting a feed-forward Ca2+ influx loop triggered by mutated NLRP3. Thus, the mutated NLRP3 forms cryo-sensitive aggregates to promote inflammasome assembly distinct from canonical NLRP3 inflammasome activation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-8.

Article and author information

Author details

  1. Tadayoshi Karasawa

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    For correspondence
    tdys.karasawa@jichi.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6738-2360
  2. Takanori Komada

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3360-3185
  3. Naoya Yamada

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Emi Aizawa

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoshiko Mizushina

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9988-5755
  6. Sachiko Watanabe

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Chintogtokh Baatarjav

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Takayoshi Matsumura

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Masafumi Takahashi

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    For correspondence
    masafumi2@jichi.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2716-7532

Funding

Japan Society for the Promotion of Science (18K08112)

  • Masafumi Takahashi

Japan Society for the Promotion of Science (21K08114)

  • Masafumi Takahashi

Japan Society for the Promotion of Science (16H01395)

  • Masafumi Takahashi

Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care

  • Tadayoshi Karasawa

Japan Agency for Medical Research and Development

  • Masafumi Takahashi

Ministry of Education, Culture, Sports, Science and Technology

  • Masafumi Takahashi

We declare that the funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Karasawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,744
    views
  • 385
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tadayoshi Karasawa
  2. Takanori Komada
  3. Naoya Yamada
  4. Emi Aizawa
  5. Yoshiko Mizushina
  6. Sachiko Watanabe
  7. Chintogtokh Baatarjav
  8. Takayoshi Matsumura
  9. Masafumi Takahashi
(2022)
Cryo-sensitive aggregation triggers NLRP3 inflammasome assembly in cryopyrin-associated periodic syndrome
eLife 11:e75166.
https://doi.org/10.7554/eLife.75166

Share this article

https://doi.org/10.7554/eLife.75166

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Benita Martin-Castaño, Patricia Diez-Echave ... Julio Galvez
    Research Article

    Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.