Intracranial human recordings reveal association between neural activity and perceived intensity for the pain of others in the insula
Abstract
Based on neuroimaging data, the insula is considered important for people to empathize with the pain of others. Here we present intracranial electroencephalographic (iEEG) recordings and single-cell recordings from the human insulae while 7 epilepsy patients rated the intensity of a woman's painful experiences seen in short movie clips. Pain had to be deduced from seeing facial expressions or a hand being slapped by a belt. We found activity in the broadband 20-190 Hz range correlated with the trial-by-trial perceived intensity in the insula for both types of stimuli. Within the insula, some locations had activity correlating with perceived intensity for our facial expressions but not for our hand stimuli, others only for our hand but not our face stimuli, and others for both. The timing of responses to the sight of the hand being hit is best explained by kinematic information; that for our facial expressions, by shape information. Comparing the broadband activity in the iEEG signal with spiking activity from a small number of neurons and an fMRI experiment with similar stimuli, revealed a consistent spatial organization, with stronger associations with intensity more anteriorly, while viewing the hand being slapped.
Data availability
The data presented in this work is publicly available at the Open Science Framework: https://osf.io/mcahz/
Article and author information
Author details
Funding
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (452-14-015)
- Valeria Gazzola
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (453-15-009)
- Christian Keysers
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Written informed consent was obtained from each participant before participating in the study. All procedures on patients were approved by the medical ethical committee of the Vrije University Medical Center (protocol 2016/037). All procedures on healthy participants were approved by the local ethics committee of the University of Amsterdam (protocols 2017-EXT-8542 and 2021-EXT-13608). In addition, written informed consent to publish was obtained from the individual whose photographs are shown in Figures 1 and 3 of the article.
Copyright
© 2022, Soyman et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.
-
- Neuroscience
Most visual tasks involve looking for specific object features. But we also often perform property-based tasks where we look for specific property in an image, such as finding an odd item, deciding if two items are same, or if an object has symmetry. How do we solve such tasks? These tasks do not fit into standard models of decision making because their underlying feature space and decision process is unclear. Using well-known principles governing multiple object representations, we show that displays with repeating elements can be distinguished from heterogeneous displays using a property we define as visual homogeneity. In behavior, visual homogeneity predicted response times on visual search, same-different and symmetry tasks. Brain imaging during visual search and symmetry tasks revealed that visual homogeneity was localized to a region in the object-selective cortex. Thus, property-based visual tasks are solved in a localized region in the brain by computing visual homogeneity.